Audible会員プラン登録で、20万以上の対象タイトルが聴き放題。

プレビューの再生
  • Number Theory: A Very Short Introduction

  • Very Short Introductions
  • 著者: Robin Wilson
  • ナレーター: Al Kessel
  • 再生時間: 7 時間 16 分

Audible会員プラン 無料体験

会員は、20万以上の対象作品が聴き放題
アプリならオフライン再生可能
プロの声優や俳優の朗読も楽しめる
Audibleでしか聴けない本やポッドキャストも多数
無料体験終了後は月会費1,500円。いつでも退会できます

Number Theory: A Very Short Introduction

著者: Robin Wilson
ナレーター: Al Kessel
30日間の無料体験を試す

無料体験終了後は月額¥1,500。いつでも退会できます。

¥1,700 で購入

¥1,700 で購入

下4桁がのクレジットカードで支払う
ボタンを押すと、Audibleの利用規約およびAmazonのプライバシー規約同意したものとみなされます。支払方法および返品等についてはこちら
activate_samplebutton_t1

あらすじ・解説

Number theory is the branch of mathematics that is primarily concerned with the counting numbers. Of particular importance are the prime numbers, the "building blocks" of our number system. The subject is an old one, dating back over two millennia to the ancient Greeks, and for many years has been studied for its intrinsic beauty and elegance, not least because several of its challenges are so easy to state that everyone can understand them, and yet no one has ever been able to resolve them.

But number theory has also recently become of great practical importance - in the area of cryptography, where the security of your credit card, and indeed of the nation's defense, depends on a result concerning prime numbers that dates back to the 18th century. Recent years have witnessed other spectacular developments, such as Andrew Wiles's proof of "Fermat's last theorem" (unproved for over 250 years) and some exciting work on prime numbers. In this Very Short Introduction, Robin Wilson introduces the main areas of classical number theory, both ancient and modern. Drawing on the work of many of the greatest mathematicians of the past, such as Euclid, Fermat, Euler, and Gauss, he situates some of the most interesting and creative problems in the area in their historical context.

©2020 Robin Wilson (P)2020 Tantor

Number Theory: A Very Short Introductionに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。