『Number Theory: A Very Short Introduction』のカバーアート

Number Theory: A Very Short Introduction

Very Short Introductions

プレビューの再生
期間限定

2か月無料体験

プレミアムプラン無料体験
プレミアムプランを2か月間無料で試す
期間限定:2025年10月14日(日本時間)に終了
2025年10月14日までプレミアムプラン2か月無料体験キャンペーン開催中。詳細はこちら
オーディオブック・ポッドキャスト・オリジナル作品など数十万以上の対象作品が聴き放題。
オーディオブックをお得な会員価格で購入できます。
無料体験後は月額1,500円で自動更新します。いつでも退会できます。

Number Theory: A Very Short Introduction

著者: Robin Wilson
ナレーター: Al Kessel
プレミアムプランを2か月間無料で試す

無料体験終了後は月額1,500円で自動更新します。いつでも退会できます。

¥1,700 で購入

¥1,700 で購入

このコンテンツについて

Number theory is the branch of mathematics that is primarily concerned with the counting numbers. Of particular importance are the prime numbers, the "building blocks" of our number system. The subject is an old one, dating back over two millennia to the ancient Greeks, and for many years has been studied for its intrinsic beauty and elegance, not least because several of its challenges are so easy to state that everyone can understand them, and yet no one has ever been able to resolve them.

But number theory has also recently become of great practical importance - in the area of cryptography, where the security of your credit card, and indeed of the nation's defense, depends on a result concerning prime numbers that dates back to the 18th century. Recent years have witnessed other spectacular developments, such as Andrew Wiles's proof of "Fermat's last theorem" (unproved for over 250 years) and some exciting work on prime numbers. In this Very Short Introduction, Robin Wilson introduces the main areas of classical number theory, both ancient and modern. Drawing on the work of many of the greatest mathematicians of the past, such as Euclid, Fermat, Euler, and Gauss, he situates some of the most interesting and creative problems in the area in their historical context.

©2020 Robin Wilson (P)2020 Tantor
数学
まだレビューはありません