『The Uptime Wind Energy Podcast』のカバーアート

The Uptime Wind Energy Podcast

The Uptime Wind Energy Podcast

著者: Allen Hall Rosemary Barnes Joel Saxum & Phil Totaro
無料で聴く

このコンテンツについて

Uptime is a renewable energy podcast focused on wind energy and energy storage technologies. Experts Allen Hall, Rosemary Barnes, Joel Saxum and Phil Totaro break down the latest research, tech, and policy.Copyright 2024, Weather Guard Lightning Tech 地球科学 生物科学 科学
エピソード
  • Australia 943 MW Project, Bermuda Offshore Plans
    2025/06/16
    Australia has approved the 943 MW Valley of the Winds Wind Farm, Bermuda plans to install an offshore wind farm with 17 turbines by 2027, and Nova Scotia proposes an ambitious $10 billion offshore wind project. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Australia has given the green light to a massive wind project. The Independent Planning Commission in New South Wales has approved ACEN Australia's nine hundred forty-three megawatt Valley of the Winds wind farm. The project also includes a three hundred twenty megawatt battery storage system. The project will create up to four hundred construction jobs and fifty permanent positions. The investment is approximately one point six eight billion Australian dollars. The island nation of Bermuda is making the most of its windy weather. Officials unveiled plans for an offshore wind farm starting with seventeen turbines by twenty twenty-seven. The project aims to help Bermuda reach its twenty thirty-five goal of eighty-five percent renewable energy. The project will begin with a sixty megawatt installation near the north shore. Officials hope to scale up to one hundred twenty megawatts total. Nigel Burgess, head of regulation at Regulatory Authority Bermuda, calls offshore wind a compelling opportunity. The project will lower exposure to fuel price shocks and create space for long-term investment. Currently, Bermuda gets one hundred percent of its power from fuel burning. The project aims to promote energy independence by reducing dependence on imported fuels. The wind farm is expected to be operational by twenty thirty. Nova Scotia has announced an ambitious offshore wind project that could cost up to ten billion dollars. Premier Tim Houston wants to license enough offshore turbines over the next ten years to produce forty gigawatts of electricity. That's eight times more than originally planned. To put this in perspective, Nova Scotia with just over one million people requires only two point four gigawatts at peak demand. China's offshore wind turbines were producing just under forty-two gigawatts as of last year. The project would require hundreds of wind turbines built in water about one hundred meters deep, about twenty-five kilometers offshore. Experts say the project would actually need more than four thousand offshore turbines using current fifteen megawatt turbines. The transmission line alone is estimated to cost between five billion and ten billion dollars to connect the wind farms with the rest of the country. The premier calls it a concept to capture the imagination of Nova Scotians. He wants federal help to cover costs, saying the excess electricity could supply twenty-seven percent of Canada's total demand.
    続きを読む 一部表示
    3 分
  • MotorDoc’s Electrical Signature Turbine Diagnosis
    2025/06/12
    Howard Penrose from MotorDoc discusses their electrical signature monitoring for wind turbines that offers precise diagnostics, enabling cost-effective preventative maintenance and lifetime extension. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Welcome to Uptime Spotlight, shining Light on Wind. Energy's brightest innovators. This is the Progress Powering tomorrow. Allen Hall: Howard, welcome back to the show. Thank you. Well, we've been traveling a, a good deal and talking to a lot of operators in the United States and in Europe, and even in Australia. And, uh, your name comes up quite a bit because we talk to all the technical people in the world and we see a lot of things. And I get asked quite a bit, what is the coolest technology that I don't know about? And I say, Howard Penrose MotorDoc. And they say, who? And I say, well, wait a minute. If you want something super powerful to learn about your turbine, that is easy to implement and has been vetted and has years of in-service testing and verification. It is MotorDock, it is [00:01:00] empower for motors, it is empath for systems and vibration and all the other things. And now empath, CMS, which is a continuous monitoring system that you're offering that those systems are revolutionary and I don't use that word a lot in wind. It's revolutionary in wind and. Let, let me just back up a little bit because I, I want to explain what some of these problems are that we're seeing in the field and, and what your systems do. But there's a, the, the core to what your technology is, is that you're using the air gap between the rotor and the stator and the generator to monitor what's happening inside the turbine. Very precisely. Can you just provide a little insight like how that magic happens? Howard Penrose: Okay. It's, it's basically, we use it as an, as a basic accelerometer. So, um, the side to side movement of the, of the rotor inside the air gap. Um. I could get very technical and use the word [00:02:00] inverse square law, but basically in the magnetic field I've got side to side movement. Plus every defect in the powertrain, um, causes either blips or hesitations in the rotation. Basically, the torque of the machine, which is also picked up in the air gap, and from a physics standpoint. The air gap, the magnetic field, can't tell the difference. And, um, both voltage and current see that as small ripples in the wave form, and then we just pull that data out. So, um, uh, I, I liken it exactly as vibration. Just a different approach, Allen Hall: right? And that that vibration turns into little ripples. And then I'm gonna talk electrical engineering, just for a brief moment, everybody. We're taking it from the time domain to the frequency domain. We're doing a four a transform. And in that four a transform, you can see these spikes that occur at, uh, known locations that correlate back to what the machine is doing Howard Penrose: exactly. [00:03:00] They're they're exact calculations, uh, down to the hundred or even thousandths of a hertz. Uh, so, uh, when we, when we do the measurements, they come up as side bands around, uh, whatever. The, the, uh, signature is, so the amplitude modulation, it's an amplitude modulated signal. So I have, uh, basically the ripple show up on the positive side of the waveform and on the negative side of the waveform. So around everything, I just have plus and minus line frequency. That's, that's basically the primary difference. Then we just convert it over to decibels, which makes it, um, relational to the load,
    続きを読む 一部表示
    25 分
  • Vestas 7.2 MW Turbine, New Aerones Funding Round
    2025/06/10
    The hosts discuss the recent $62 million funding round for Aerones, Siemens Energy's call for increased offshore wind capacity in the UK, Canada's push for offshore wind with Bill C-49, and the installation of Vestas' 7.2 MW turbine in Germany. And the Coyote Wind Farm in Texas as the Wind Farm of the Week. Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! You are listening to the Uptime Wind Energy Podcast brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now here's your hosts, Alan Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes. Allen Hall: And welcome back to the Uptown Wind Energy Podcast. I'm here with Rosemary Barnes, Joel Saxon, and Phil Ro. Uh, crazy week. Again, I don't know how else to describe it. The, I was just telling our producer this morning that there's so much news coming out where it seemed like to be a little bit of a lull after the US House bill, but it's picked right back up again. And one of the more exciting things that's happened is A owns closed a $62 million series B. Uh, led by Activate Capital and S two G with, uh, revenue growing at Aeros by about 300% in 2024, and they are getting a lot of requests from [00:01:00] operators in the United States and elsewhere to fix their wind turbine blades. They have been working pretty closely with GE Renova and NextEra. Over the last, what Joel say two years, maybe a little bit longer on a number of problems. Joel Saxum: Yeah. A couple years they've been doing, uh, bespoke solutions for both of them. They've also been doing their, you know, standard things that they're rolling out to the rest of the market. But I think this is a good thing. In one article that I was reading, there is like a tier one operator starting to adopt it, right? So. Everybody was kind of approaching that robotic thing, like, yeah, it looks like it's the future and, you know, but a little trepid, right? Dipping a toe in or dipping a finger into the water, trying it out. But now it seems like, hey, we got an LEP campaign, coones, we've got this robotics problem we wanna solve, collar owns. So they're starting to get more and more adoption and, and that shows, right, 300%, uh, revenue growth in 2024. So that's, that's huge, right? To, to hit that kind of number. So now it's up to, uh, scaling up. Uh, the only thing that can cap that number is the amount of robots that they can put outta the [00:02:00] factory over there in Riga. Allen Hall: And we visited their facility in the United States about a year ago. It was just outside of Dallas, near Lake Dallas of all places. And it is a decent sized facility, but at the time we, when we walked around out back, you just noticed a whole bunch of, uh, parking lot spaces with trailers and capabilities for robots and thought, wow, that there's a lot of robot, uh, sitting in the parking lot. And, uh. But then they had, when I asked they, they said, oh, they had a ton of crews already out in the field working. So they do have the ability to get to a number of turbine sites. I, I guess maybe still not enough from what I hear, there's, the demand has gone through the roof. Joel Saxum: Well, it's, it's a really interesting, or really cool, I guess, opportunity for technicians. So that's one of the things that robotics does is it addresses the technician shortage. You got a technician shortage, great, let's use robots. Then we can start, uh, having that force multiplier, right? Because you could run robots on two turbines from one control van.
    続きを読む 一部表示
    16 分

The Uptime Wind Energy Podcastに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。