
The Analytics Engine for All Your Data with Justin Borgman @ Starburst
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
In this episode we speak with Justin Borgman, Chairman & CEO at Starburst, which is based on open source Trino (formerly PrestoSQL) and was recently valued at $3.35 billion after securing their series D funding. In this episode we discuss convergence of DW’s / DL's, why data lakes fail and much much more.
Top 3 takeaways
- The data mesh architecture is gaining adoption more quickly in Europe due to GDPR.
- There were two main limitations of data lakes when comparing to DW’s, performance and CRUD operations. Performance has been resolved with query engines like Starburst and tools like Apache Iceberg, Apache Hudi and Delta Lake are starting to close the gap with CRUD operations.
- The principle of a single source of truth / storing everything in a single DL or DW is not always feasible or possible depending on regulations. Starburst is bridging that gap and enabling data mesh and data fabric architectures.