エピソード

  • #28: Multistakeholder Recommender Systems with Robin Burke
    2025/04/15
    In episode 28 of Recsperts, I sit down with Robin Burke, professor of information science at the University of Colorado Boulder and a leading expert with over 30 years of experience in recommender systems. Together, we explore multistakeholder recommender systems, fairness, transparency, and the role of recommender systems in the age of evolving generative AI.We begin by tracing the origins of recommender systems, traditionally built around user-centric models. However, Robin challenges this perspective, arguing that all recommender systems are inherently multistakeholder—serving not just consumers as the recipients of recommendations, but also content providers, platform operators, and other key players with partially competing interests. He explains why the common “Recommended for You” label is, at best, an oversimplification and how greater transparency is needed to show how stakeholder interests are balanced.Our conversation also delves into practical approaches for handling multiple objectives, including reranking strategies versus integrated optimization. While embedding multistakeholder concerns directly into models may be ideal, reranking offers a more flexible and efficient alternative, reducing the need for frequent retraining.Towards the end of our discussion, we explore post-userism and the impact of generative AI on recommendation systems. With AI-generated content on the rise, Robin raises a critical concern: if recommendation systems remain overly user-centric, generative content could marginalize human creators, diminishing their revenue streams. Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.Don't forget to follow the podcast and please leave a review(00:00) - Introduction(03:24) - About Robin Burke and First Recommender Systems(26:07) - From Fairness and Advertising to Multistakeholder RecSys(34:10) - Multistakeholder RecSys Terminology(40:16) - Multistakeholder vs. Multiobjective(42:43) - Reciprocal and Value-Aware RecSys(59:14) - Objective Integration vs. Reranking(01:06:31) - Social Choice for Recommendations under Fairness (01:17:40) - Post-Userist Recommender Systems(01:26:34) - Further Challenges and Closing RemarksLinks from the Episode:Robin Burke on LinkedInRobin's WebsiteThat Recommender Systems LabReference to Broder's Keynote on Computational Advertising and Recommender Systems from RecSys 2008Multistakeholder Recommender Systems (from Recommender Systems Handbook), chapter by Himan Abdollahpouri & Robin BurkePOPROX: The Platform for OPen Recommendation and Online eXperimentationAltRecSys 2024 (Workshop at RecSys 2024)Papers:Burke et al. (1996): Knowledge-Based Navigation of Complex Information SpacesBurke (2002): Hybrid Recommender Systems: Survey and ExperimentsResnick et al. (1997): Recommender SystemsGoldberg et al. (1992): Using collaborative filtering to weave an information tapestryLinden et al. (2003): Amazon.com Recommendations - Item-to-Item Collaborative FilteringAird et al. (2024): Social Choice for Heterogeneous Fairness in RecommendationAird et al. (2024): Dynamic Fairness-aware Recommendation Through Multi-agent Social ChoiceBurke et al. (2024): Post-Userist Recommender Systems : A ManifestoBaumer et al. (2017): Post-userismBurke et al. (2024): Conducting Recommender Systems User Studies Using POPROXGeneral Links:Follow me on LinkedInFollow me on XSend me your comments, questions and suggestions to marcel.kurovski@gmail.comRecsperts Website
    続きを読む 一部表示
    1 時間 35 分
  • #27: Recommender Systems at the BBC with Alessandro Piscopo and Duncan Walker
    2025/03/19

    In episode 27 of Recsperts, we meet Alessandro Piscopo, Lead Data Scientist in Personalization and Search, and Duncan Walker, Principal Data Scientist in the iPlayer Recommendations Team, both from the BBC. We discuss how the BBC personalizes recommendations across different offerings like news or video and audio content recommendations. We learn about the core values for the oldest public service media organization and the collaboration with editors in that process.

    The BBC once started with short video recommendations for BBC+ and nowadays has to consider recommendations across multiple domains: news, the iPlayer, BBC Sounds, BBC Bytesize, and more. With a reach of about 500M+ users who access services every week there is a huge potential. My guests discuss the challenges of aligning recommendations with public service values and the role of editors and constant exchange, alignment, and learning between the algorithmic and editorial lines of recommender systems.
    We also discuss the potential of cross-domain recommendations to leverage the content across different products as well as the organizational setup of teams working on recommender systems at the BBC. We learn about skews in the data due to the nature of an online service that also has a linear offering with TV and radio services.

    Towards the end, we also touch a bit on QUARE @ RecSys, which is the Workshop on Measuring the Quality of Explanations in Recommender Systems.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (03:10) - About Alessandro Piscopo and Duncan Walker
    • (14:53) - RecSys Applications at the BBC
    • (20:22) - Journey of Building Public Service Recommendations
    • (28:02) - Role and Implementation of Public Service Values
    • (36:52) - Algorithmic and Editorial Recommendation
    • (01:01:54) - Further RecSys Challenges at the BBC
    • (01:15:53) - Quare Workshop
    • (01:23:27) - Closing Remarks

    Links from the Episode:
    • Alessandro Piscopo on LinkedIn
    • Duncan Walker on LinkedIn
    • BBC
    • QUARE @ RecSys 2023 (2nd Workshop on Measuring the Quality of Explanations in Recommender Systems)

    Papers:

    • Clarke et al. (2023): Personalised Recommendations for the BBC iPlayer: Initial approach and current challenges
    • Boididou et al. (2021): Building Public Service Recommenders: Logbook of a Journey
    • Piscopo et al. (2019): Data-Driven Recommendations in a Public Service Organisation

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    1 時間 28 分
  • #26: Diversity in Recommender Systems with Sanne Vrijenhoek
    2025/02/19

    In episode 26 of Recsperts, I speak with Sanne Vrijenhoek, a PhD candidate at the University of Amsterdam’s Institute for Information Law and the AI, Media & Democracy Lab. Sanne’s research explores diversity in recommender systems, particularly in the news domain, and its connection to democratic values and goals.

    We dive into four of her papers, which focus on how diversity is conceptualized in news recommender systems. Sanne introduces us to five rank-aware divergence metrics for measuring normative diversity and explains why diversity evaluation shouldn’t be approached blindly—first, we need to clarify the underlying values. She also presents a normative framework for these metrics, linking them to different democratic theory perspectives. Beyond evaluation, we discuss how to optimize diversity in recommender systems and reflect on missed opportunities—such as the RecSys Challenge 2024, which could have gone beyond accuracy-chasing. Sanne also shares her recommendations for improving the challenge by incorporating objectives such as diversity.


    During our conversation, Sanne shares insights on effectively communicating recommender systems research to non-technical audiences. To wrap up, we explore ideas for fostering a more diverse RecSys research community, integrating perspectives from multiple disciplines.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (03:24) - About Sanne Vrijenhoek
    • (14:49) - What Does Diversity in RecSys Mean?
    • (26:32) - Assessing Diversity in News Recommendations
    • (34:54) - Rank-Aware Divergence Metrics to Measure Normative Diversity
    • (01:01:37) - RecSys Challenge 2024 - Recommendations for the Recommenders
    • (01:11:23) - RecSys Workshops - NORMalize and AltRecSys
    • (01:15:39) - On the Different Conceptualizations of Diversity in RecSys
    • (01:28:38) - Closing Remarks

    Links from the Episode:
    • Sanne Vrijenhoek on LinkedIn
    • Informfully
    • MIND: MIcrosoft News Dataset
    • RecSys Challenge 2024
    • NORMalize 2023: The First Workshop on the Normative Design and Evaluation of Recommender Systems
    • NORMalize 2024: The Second Workshop on the Normative Design and Evaluation of Recommender Systems
    • AltRecSys 2024: The AltRecSys Workshop on Alternative, Unexpected, and Critical Ideas in Recommendation

    Papers:

    • Vrijenhoek et al. (2021): Recommenders with a Mission: Assessing Diversity in News Recommendations
    • Vrijenhoek et al. (2022): RADio – Rank-Aware Divergence Metrics to Measure Normative Diversity in News Recommendations
    • Heitz et al. (2024): Recommendations for the Recommenders: Reflections on Prioritizing Diversity in the RecSys Challenge
    • Vrijenhoek et al. (2024): Diversity of What? On the Different Conceptualizations of Diversity in Recommender Systems
    • Helberger (2019): On the Democratic Role of News Recommenders
    • Steck (2018): Calibrated Recommendations

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    1 時間 36 分
  • #25: RecSys 2024 Special
    2024/10/12

    In episode 25, we talk about the upcoming ACM Conference on Recommender Systems 2024 (RecSys) and welcome a former guest to geek about the conference.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (01:56) - Overview RecSys 2024
    • (07:01) - Contribution Stats
    • (09:37) - Interview

    Links from the Episode:
    • RecSys 2024 Conference Website

    Papers:

    • RecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    40 分
  • #24: Video Recommendations at Facebook with Amey Dharwadker
    2024/10/01

    In episode 24 of Recsperts, I sit down with Amey Dharwadker, Machine Learning Engineering Manager at Facebook, to dive into the complexities of large-scale video recommendations. Amey, who leads the Video Recommendations Quality Ranking team at Facebook, sheds light on the intricate challenges of delivering personalized video feeds at scale. Our conversation covers content understanding, user interaction data, real-time signals, exploration, and evaluation techniques.

    We kick off the episode by reflecting on the inaugural VideoRecSys workshop at RecSys 2023, setting the stage for a deeper discussion on Facebook’s approach to video recommendations. Amey walks us through the critical challenges they face, such as gathering reliable user feedback signals to avoid pitfalls like watchbait. With a vast and ever-growing corpus of billions of videos—millions of which are added each month—the cold start problem looms large. We explore how content understanding, user feedback aggregation, and exploration techniques help address this issue. Amey explains how engagement metrics like watch time, comments, and reactions are used to rank content, ensuring users receive meaningful and diverse video feeds.

    A key highlight of the conversation is the importance of real-time personalization in fast-paced environments, such as short-form video platforms, where user preferences change quickly. Amey also emphasizes the value of cross-domain data in enriching user profiles and improving recommendations.

    Towards the end, Amey shares his insights on leadership in machine learning teams, pointing out the characteristics of a great ML team.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (02:32) - About Amey Dharwadker
    • (08:39) - Video Recommendation Use Cases on Facebook
    • (16:18) - Recommendation Teams and Collaboration
    • (25:04) - Challenges of Video Recommendations
    • (31:07) - Video Content Understanding and Metadata
    • (33:18) - Multi-Stage RecSys and Models
    • (42:42) - Goals and Objectives
    • (49:04) - User Behavior Signals
    • (59:38) - Evaluation
    • (01:06:33) - Cross-Domain User Representation
    • (01:08:49) - Leadership and What Makes a Great Recommendation Team
    • (01:13:01) - Closing Remarks

    Links from the Episode:
    • Amey Dharwadker on LinkedIn
    • Amey's Website
    • RecSys Challenge 2021
    • VideoRecSys Workshop 2023
    • VideoRecSys + LargeRecSys 2024

    Papers:

    • Mahajan et al. (2023): CAViaR: Context Aware Video Recommendations
    • Mahajan et al. (2023): PIE: Personalized Interest Exploration for Large-Scale Recommender Systems
    • Raul et al. (2023): CAM2: Conformity-Aware Multi-Task Ranking Model for Large-Scale Recommender Systems
    • Zhai et al. (2024): Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
    • Saket et al. (2023): Formulating Video Watch Success Signals for Recommendations on Short Video Platforms
    • Wang et al. (2022): Surrogate for Long-Term User Experience in Recommender Systems
    • Su et al. (2024): Long-Term Value of Exploration: Measurements, Findings and Algorithms

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    1 時間 21 分
  • #23: Generative Models for Recommender Systems with Yashar Deldjoo
    2024/08/16

    In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

    We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
    We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.


    Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (03:58) - About Yashar Deldjoo
    • (09:34) - Motivation for RecSys
    • (13:05) - Intro to Generative Models for Recommender Systems
    • (44:27) - Modeling Paradigms for Generative Models
    • (51:33) - Scenario 1: Interaction-Driven Recommendation
    • (57:59) - Scenario 2: Text-based Recommendation
    • (01:10:39) - Scenario 3: Multimodal Recommendation
    • (01:24:59) - Evaluation of Impact and Harm
    • (01:38:07) - Further Research Challenges
    • (01:45:03) - References and Research Advice
    • (01:49:39) - Closing Remarks

    Links from the Episode:
    • Yashar Deldjoo on LinkedIn
    • Yashar's Website
    • KDD 2024 Tutorial: Modern Recommender Systems Leveraging Generative AI: Fundamentals, Challenges and Opportunities
    • RecSys 2024 Workshop: The 1st Workshop on Risks, Opportunities, and Evaluation of Generative Models in Recommender Systems (ROEGEN@RECSYS'24)

    Papers:

    • Deldjoo et al. (2024): A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys)
    • Deldjoo et al. (2020): Recommender Systems Leveraging Multimedia Content
    • Deldjoo et al. (2021): A Survey on Adversarial Recommender Systems: From Attack/Defense Strategies to Generative Adversarial Networks
    • Deldjoo et al. (2020): How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models
    • Liang et al. (2018): Variational Autoencoders for Collaborative Filtering
    • He et al. (2016): Visual Bayesian Personalized Ranking from Implicit Feedback

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    1 時間 55 分
  • #22: Pinterest Homefeed and Ads Ranking with Prabhat Agarwal and Aayush Mudgal
    2024/06/06
    In episode 22 of Recsperts, we welcome Prabhat Agarwal, Senior ML Engineer, and Aayush Mudgal, Staff ML Engineer, both from Pinterest, to the show. Prabhat works on recommendations and search systems at Pinterest, leading representation learning efforts. Aayush is responsible for ads ranking and privacy-aware conversion modeling. We discuss user and content modeling, short- vs. long-term objectives, evaluation as well as multi-task learning and touch on counterfactual evaluation as well.In our interview, Prabhat guides us through the journey of continuous improvements of Pinterest's Homefeed personalization starting with techniques such as gradient boosting over two-tower models to DCN and transformers. We discuss how to capture users' short- and long-term preferences through multiple embeddings and the role of candidate generators for content diversification. Prabhat shares some details about position debiasing and the challenges to facilitate exploration.With Aayush we get the chance to dive into the specifics of ads ranking at Pinterest and he helps us to better understand how multifaceted ads can be. We learn more about the pain of having too many models and the Pinterest's efforts to consolidate the model landscape to improve infrastructural costs, maintainability, and efficiency. Aayush also shares some insights about exploration and corresponding randomization in the context of ads and how user behavior is very different between different kinds of ads.Both guests highlight the role of counterfactual evaluation and its impact for faster experimentation.Towards the end of the episode, we also touch a bit on learnings from last year's RecSys challenge.Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.Don't forget to follow the podcast and please leave a review(00:00) - Introduction(03:51) - Guest Introductions(09:57) - Pinterest Introduction(21:57) - Homefeed Personalization(47:27) - Ads Ranking(01:14:58) - RecSys Challenge 2023(01:20:26) - Closing RemarksLinks from the Episode:Prabhat Agarwal on LinkedInAayush Mudgal on LinkedInRecSys Challenge 2023Pinterest Engineering BlogPinterest LabsPrabhat's Talk at GTC 2022: Evolution of web-scale engagement modeling at PinterestBlogpost: How we use AutoML, Multi-task learning and Multi-tower models for Pinterest AdsBlogpost: Pinterest Home Feed Unified Lightweight Scoring: A Two-tower ApproachBlogpost: Experiment without the wait: Speeding up the iteration cycle with Offline Replay ExperimentationBlogpost: MLEnv: Standardizing ML at Pinterest Under One ML Engine to Accelerate InnovationBlogpost: Handling Online-Offline Discrepancy in Pinterest Ads Ranking SystemPapers:Eksombatchai et al. (2018): Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-TimeYing et al. (2018): Graph Convolutional Neural Networks for Web-Scale Recommender SystemsPal et al. (2020): PinnerSage: Multi-Modal User Embedding Framework for Recommendations at PinterestPancha et al. (2022): PinnerFormer: Sequence Modeling for User Representation at PinterestZhao et al. (2019): Recommending what video to watch next: a multitask ranking systemGeneral Links:Follow me on LinkedInFollow me on XSend me your comments, questions and suggestions to marcel.kurovski@gmail.comRecsperts Website
    続きを読む 一部表示
    1 時間 24 分
  • #21: User-Centric Evaluation and Interactive Recommender Systems with Martijn Willemsen
    2024/04/08

    In episode 21 of Recsperts, we welcome Martijn Willemsen, Associate Professor at the Jheronimus Academy of Data Science and Eindhoven University of Technology. Martijn's researches on interactive recommender systems which includes aspects of decision psychology and user-centric evaluation. We discuss how users gain control over recommendations, how to support their goals and needs as well as how the user-centric evaluation framework fits into all of this.

    In our interview, Martijn outlines the reasons for providing users control over recommendations and how to holistically evaluate the satisfaction and usefulness of recommendations for users goals and needs. We discuss the psychology of decision making with respect to how well or not recommender systems support it. We also dive into music recommender systems and discuss how nudging users to explore new genres can work as well as how longitudinal studies in recommender systems research can advance insights.

    Towards the end of the episode, Martijn and I also discuss some examples and the usefulness of enabling users to provide negative explicit feedback to the system.

    Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
    Don't forget to follow the podcast and please leave a review

    • (00:00) - Introduction
    • (03:03) - About Martijn Willemsen
    • (15:14) - Waves of User-Centric Evaluation in RecSys
    • (19:35) - Behaviorism is not Enough
    • (46:21) - User-Centric Evaluation Framework
    • (01:05:38) - Genre Exploration and Longitudinal Studies in Music RecSys
    • (01:20:59) - User Control and Negative Explicit Feedback
    • (01:31:50) - Closing Remarks

    Links from the Episode:
    • Martijn Willemsen on LinkedIn
    • Martijn Willemsen's Website
    • User-centric Evaluation Framework
    • Behaviorism is not Enough (Talk at RecSys 2016)
    • Neil Hunt: Quantifying the Value of Better Recommendations (Keynote at RecSys 2014)
    • What recommender systems can learn from decision psychology about preference elicitation and behavioral change (Talk at Boise State (Idaho) and Grouplens at University of Minnesota)
    • Eric J. Johnson: The Elements of Choice
    • Rasch Model
    • Spotify Web API

    Papers:

    • Ekstrand et al. (2016): Behaviorism is not Enough: Better Recommendations Through Listening to Users
    • Knijenburg et al. (2012): Explaining the user experience of recommender systems
    • Ekstrand et al. (2014): User perception of differences in recommender algorithms
    • Liang et al. (2022): Exploring the longitudinal effects of nudging on users’ music genre exploration behavior and listening preferences
    • McNee et al. (2006): Being accurate is not enough: how accuracy metrics have hurt recommender systems

    General Links:

    • Follow me on LinkedIn
    • Follow me on X
    • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
    • Recsperts Website
    続きを読む 一部表示
    1 時間 36 分