
Predictive Models for Water Quality | Ep. 15
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
In this episode of The Aquaculture Podcast Show, we take a close look at how predictive modeling can help manage water quality in outdoor red tilapia systems. We break down key parameters, dissolved oxygen, total ammonia, nitrite, and alkalinity, and identify the environmental factors that affect them most. You'll hear how hybrid analytical models offer near-real-time insights that boost system control and support healthier fish. Tune in now on all major platforms!
Inspired by the 2024 article titled "Comparison of water quality prediction for red tilapia aquaculture in an outdoor recirculation system using deep learning and a hybrid model" by Jongjaraunsuk, R., Taparhudee, W., and Suwannasing, P.
Click here to read the full research article!
“The best model in this work, using data already available from the system, could spit out a forecast for ammonia or DO in about 15 minutes.”
Liked this one? Don’t stop now — Here’s what we think you’ll love!
What will you learn:
- (00:00) Highlight
- (01:11) Introduction
- (02:50) Predicting dissolved oxygen
- (04:41) Ammonia prediction factors
- (07:12) Nitrite forecasting model
- (07:45) Alkalinity prediction dynamics
- (08:06) Challenges in modeling pH
- (11:19) Closing thoughts
𝗟𝗶𝘀𝘁𝗲𝗻 𝗼𝗻 𝗔𝗽𝗽𝗹𝗲 𝗣𝗼𝗱𝗰𝗮𝘀𝘁𝘀, 𝗦𝗽𝗼𝘁𝗶𝗳𝘆 𝗼𝗿 𝗮𝗻𝘆 𝗺𝗮𝗷𝗼𝗿 𝗽𝗹𝗮𝘁𝗳𝗼𝗿𝗺.
Website: The Aquaculture Podcast Show
Instagram: The Aquaculture Podcast Show
LinkedIn: The Aquaculture Podcast Show