『Optimizing for efficiency with IBM’s Granite』のカバーアート

Optimizing for efficiency with IBM’s Granite

Optimizing for efficiency with IBM’s Granite

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

We often judge AI models by leaderboard scores, but what if efficiency matters more? Kate Soule from IBM joins us to discuss how Granite AI is rethinking AI at the edge—breaking tasks into smaller, efficient components and co-designing models with hardware. She also shares why AI should prioritize efficiency frontiers over incremental benchmark gains and how seamless model routing can optimize performance.

Featuring:

  • Kate Soule – LinkedIn
  • Chris Benson – Website, GitHub, LinkedIn, X
  • Daniel Whitenack – Website, GitHub, X

Links:

  • IBM Granite
  • IBM Granite on Hugging Face
  • IBM Expands Granite Model Family with New Multi-Modal and Reasoning AI Built for the Enterprise

Optimizing for efficiency with IBM’s Graniteに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。