
Optimizing for efficiency with IBM’s Granite
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
We often judge AI models by leaderboard scores, but what if efficiency matters more? Kate Soule from IBM joins us to discuss how Granite AI is rethinking AI at the edge—breaking tasks into smaller, efficient components and co-designing models with hardware. She also shares why AI should prioritize efficiency frontiers over incremental benchmark gains and how seamless model routing can optimize performance.
Featuring:
- Kate Soule – LinkedIn
- Chris Benson – Website, GitHub, LinkedIn, X
- Daniel Whitenack – Website, GitHub, X
Links:
- IBM Granite
- IBM Granite on Hugging Face
- IBM Expands Granite Model Family with New Multi-Modal and Reasoning AI Built for the Enterprise