Gen AI Project Are Failing at High Rates. But Why?
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Send us a text
The conversation begins with a sobering statistic from an MIT report: 95% of generative AI pilots fail to deliver measurable impact on P&L. But as Stuart points out, that doesn’t mean they’re worthless. Many projects drive internal process improvements, enhance compliance, and streamline operations—benefits that don’t always show up on a balance sheet but are critical to business success.
This discussion highlights a recurring theme: back-office automation consistently delivers higher ROI than customer-facing AI. Internal processes are well-documented and easier to optimize, while public-facing AI carries reputational risks. Stuart shares examples of chatbots behaving badly on social media, underscoring the importance of starting with internal use cases.
Key Takeaways:
- Most AI pilots fail to impact P&L—but still deliver internal value.
- Data readiness is essential; clean, structured data is the foundation.
- Back-office automation offers higher ROI and lower risk than customer-facing AI.
- Targeted, repeatable solutions outperform one-off proofs of concept.
- Avoid vendor lock-in by deploying in customer tenants and delivering code.
- Success lies in purposeful design, tailored agents, and a steady approach to innovation.
global.hitachi-solutions.com