
Ep 43 – The Algorithm Master: Unpacking the Kuṭṭākāra (Ancient RSA Algorithm)
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
In Episode 43 of Ancient Code, Modern Mind, host Harsh Rain delves into Aryabhata’s Kuṭṭākāra algorithm from the Gaṇitapāda of the Aryabhatiya, a groundbreaking contribution to algebra critical for astronomy. The Kuṭṭākāra (Koot-taa-KAA-ra), meaning ‘pulverizer,’ solves linear indeterminate equations (e.g., ax + by = c) for integer solutions, addressing problems like synchronizing celestial cycles for eclipses or calendar adjustments (adhimāsa, avamarātra). Harsh explains its role in finding when cycles, like solar and lunar positions, align, using a recursive process akin to the Euclidean algorithm. This method, elaborated by Brahmagupta, showcases India’s advanced number theory, surpassing contemporary Greek and Babylonian approaches. The episode connects the Kuṭṭākāra to modern cryptography, where integer solutions and modular arithmetic underpin secure digital communication, highlighting Aryabhata’s enduring mathematical legacy. Engaging and technical, this episode celebrates the algorithmic brilliance of ancient Indian mathematics.
Key Words:
Aryabhata, Aryabhatiya, Gaṇitapāda, Kuṭṭākāra, linear indeterminate equations, integer solutions, astronomy, adhimāsa, avamarātra, number theory, Euclidean algorithm, Brahmagupta, cryptography, algorithmic thinking, Indian mathematics, modern applications.
Disclosures:
This podcast is produced for educational and entertainment purposes and reflects interpretations of historical texts. Listeners are encouraged to consult primary sources and scholarly works for further study.
Pronunciations of Sanskrit terms are approximations for accessibility and may vary across regional traditions.
This podcast may utilize artificial intelligence for voice generation and content creation to enhance production quality and accessibility.