『Cell Culture Dish Podcast』のカバーアート

Cell Culture Dish Podcast

Cell Culture Dish Podcast

著者: Brandy Sargent
無料で聴く

このコンテンツについて

The Cell Culture Dish (CCD) podcast covers areas important to the research, discovery, development, and manufacture of disease and biologic therapeutics. Key industry coverage areas include: drug discovery and development, stem cell research, cell and gene therapy, recombinant antibodies, vaccines, and emerging therapeutic modalities.Copyright 2025. All rights reserved. 博物学 生物科学 科学 自然・生態学 衛生・健康的な生活 身体的病い・疾患
エピソード
  • Advancing Closed-System Performance: How CPC’s MicroCNX® Connectors Enable Scalable Cell and Gene Therapy Manufacturing
    2025/12/09
    In this podcast, we spoke with Troy Ostreng, Senior Product Manager and David Burdge, Director of Cell and Gene Therapy at CPC about the development of the MicroCNX® aseptic micro-connectors and how they’re helping biopharma teams streamline closed-system operations for cell and gene therapies. What unfolded was a detailed and forward-looking conversation that touched on CPC’s 47-year legacy, the technical demands of advanced therapies, and the company’s plans to drive the future of automation and sterility in manufacturing. A Legacy That Positioned CPC for Today’s Advanced Therapy Boom When asked how CPC’s long history in biologics and hospital environments prepared the company for today’s cell and gene therapy landscape, David took us back to CPC’s roots. “CPC was founded in 1978, so that’s 47 years of innovation within connection technologies,” he said. “The first biologic was released in 1982, synthetic insulin, and we were there supporting the industry with open-format connectors on single-use bags.” From the early development of biologics through the shift to single-use and the rise of stainless-steel/single-use hybrid systems, CPC continuously evolved its connection technologies. They launched steam-through connectors as bioprocessing grew more complex, released their first aseptic connector in 2009, and introduced their first connector specifically targeted for the cell and gene therapy market in 2017. David explained how that history matters today: “Biologics has about a 35-year head start on advanced therapies. So the question becomes, what lessons can we transfer from biologics to cell and gene therapy as that industry grows at three to four times the rate biologics did in its first decade?” That perspective, combining biological manufacturing experience with the needs of new therapy modalities, forms the foundation for CPC’s MicroCNX platform. MicroCNX: The First Aseptic Connector Built for Small-Format Tubing As cell and gene therapy developers began scaling up manufacturing, they quickly discovered a problem: the connectors used for biologics were not designed for small-volume, patient-specific therapies. Troy described it plainly: “Several years ago, we started hearing rumblings that current connectors weren’t meeting what cell and gene therapy required.” CPC responded with a deep Voice of Customer (VOC) initiative, interviewing process engineers, operators, manufacturing leaders, and platform developers. Over and over, the same needs emerged. Operators wanted something simple. “Ease of use was the number one requirement,” Troy said. “Operators needed a product that was easy to use so they could make sterile connections in a short amount of time.” Processes demanded robustness. “Customers needed a connection they could trust—no contamination, no failures, no weak spots in the connection process,” he added. Small-volume precise applications required connectors actually designed for them. With autologous therapies, he noted, “We aren’t talking about 1,000 liters; we’re talking about 250 milliliters. And if there’s a mishap, that could mean the difference between life and death for a patient.” All of this laid the groundwork for MicroCNX, which became the first aseptic connector engineered for small-format tubing. The “Pinch-Click-Pull” Process: Sterility Meets Speed One of the standout features of MicroCNX is its elegantly simple pinch-click-pull operation. Troy explained how simplicity came directly from user feedback. “As operators walked us through their pain points, what they needed was clear: a connector they could learn immediately. So MicroCNX has a three-step process—pinch, click, pull. You can literally do it as fast as I say it.” He continued,“Once someone does it one time, they’re basically an expert. That ease of use dramatically reduces operator error.” For an industry where operator variability remains one of the biggest sources of risk and batch loss, eliminating complexity is critical. Cryogenic Challenges Call for Cryo-Rated Solutions As the conversation shifted to cryopreservation, a critical component of cell therapy manufacturing,Troy introduced the MicroCNX® ULT and MicroCNX® Nano variants. “These were really developed because therapies were being frozen to –150°C, even –190°C. You need a connector that can be frozen to those temperatures, thawed, and still be as robust as it was before.” The ULT and Nano were engineered with: Low-profile geometries to fit inside freezing cassettes Specialized materials to withstand thermal stress Chemical compatibility with DMSO and other cryoprotectants Enhanced durability to survive impacts while frozen Troy emphasized how critical it was to get the materials right: “We searched extensively for a material that could handle those harsh chemicals and temperatures. What we landed on was PPSU—polyphenylsulfone. It’s chemically sound, and it’...
    続きを読む 一部表示
    33 分
  • Inside ATLAS – Transforming Surfactant Monitoring in Bioprocessing
    2025/08/20
    Surfactants are indispensable in the production of biologics, vaccines, and cell therapies. Yet for years, they’ve posed a persistent challenge: they are notoriously difficult to monitor accurately and in real time. That challenge is now being addressed by Nirrin and its groundbreaking Atlas platform, a real-time spectroscopy solution that is reshaping how biomanufacturers measure and manage surfactants. In this episode of The Cell Culture Dish podcast, Editor Brandy Sargent spoke with Bryan Hassell, Founder and CEO of Nirrin, and Hannah Furrelle, Analytical Scientist at the company, to discuss the science behind Atlas and its implications for bioprocessing. Real-Time Data Without Compromise At the core of Atlas’s innovation is its ability to provide high-quality quantitative data in under a minute—without any sample preparation. “The real breakthrough with Atlas is speed with confidence,” explained Hassell. “Time to market for biopharma is increasingly critical, yet a lot of critical decisions still rely on data from assays that take days or even months. Atlas changes that.” Unlike traditional techniques, which often require significant sample manipulation and suffer from matrix interference, Atlas uses high-precision tunable laser spectroscopy to directly analyze samples in their native form. “What makes Atlas so powerful is that we’re looking at the sample without altering it,” Furrelle explained. “That means the data we get is true to the process—there’s no distortion from prep steps or artifacts introduced by the method.” Moving Beyond PLS: A New Modeling Approach One of the technological breakthroughs enabling this leap in performance is Nirran’s move away from PLS models in favor of an iterative optimization framework. This approach eliminates the need for extensive training data, reducing model complexity while increasing robustness and flexibility. “Where a PLS model might need 20 to 30 bioreactor runs to build a dataset, Atlas delivers data on the fly,” Hassell said. “It’s not only faster, it’s more robust, more compliant, and more versatile—especially for applications like scale-up or tech transfer, where traditional models often break down.” Applications Across the Biomanufacturing Workflow Atlas is already being integrated into real-world bioprocessing environments, including both batch and continuous manufacturing. In batch processes, manufacturers use Atlas to confirm critical parameters—like protein and excipient concentrations—before proceeding to the next unit operation. This enables earlier course corrections and helps prevent downstream failures. “In the past, you either waited days for lab results or moved forward at risk,” said Hassell. “Atlas provides the immediate answers needed to make confident decisions in the moment.” For continuous manufacturing, the value is equally profound. Atlas provides the real-time, quantitative feedback necessary for dynamic process control. “You can’t have continuous processing without real-time data,” he said. “Atlas gives you the insights needed to support real-time decisions at every step.” Eliminating Risk with No-Prep Analysis One of Atlas’s standout features is its ability to deliver no-prep analysis. This eliminates sources of variability that often arise during sample handling and processing. “We’re scanning samples in their native form,” said Furrelle. “That means what we’re measuring reflects what’s actually in the process—without distortion from dilutions or centrifugation.” This no-prep capability also speeds up workflows and eliminates risk by allowing operators to verify component concentrations instantly before committing to the next step in production. Laying the Foundation for Smart Biomanufacturing Nirrin sees Atlas not just as a data tool, but as a stepping stone to smart biomanufacturing. Although full automation isn’t yet widespread, Atlas is helping to lay the groundwork by delivering trustworthy real-time data, something most operations have historically lacked. “Right now, we’re focused on validating the technology and educating the industry,” said Hassell. “Without sensors like ours, you can’t have smart manufacturing. But once real-time data becomes available, everything else,automation, digital twins, AI,can start to fall into place.” Furrelle agreed, adding, “You can’t automate without sensors. Atlas gives you real-time insights that teams can actually use, not work around.” From QC Tool to Strategic Platform As teams adopt quality-by-design (QbD) approaches, Atlas is being used well beyond its initial QC role. It’s becoming a platform for optimizing surfactant levels, improving batch-to-batch consistency, and proactively preventing formulation issues. “You can’t have quality if you don’t start from a place of quality,” Furrelle said. “Validating components before you use them is no longer just ideal, it’...
    続きを読む 一部表示
    30 分
  • From Storage Tanks to Smart Systems: The Evolution of Buffer Preparation
    2025/04/30
    In this podcast, we spoke with Nainesh Shah, Sr. Application Engineer, Asahi Kasei Bioprocess America, about how inline buffer formulation and their MOTIV® system offers a more efficient, scalable, and cost-effective approach to buffer preparation. Traditional methods require large storage spaces, pose risks of leakage, and create inefficiencies that can disrupt production. In contrast, inline buffer formulation enables real-time mixing of concentrated ingredients, eliminating storage constraints and allowing for dynamic adjustments based on demand. With benefits like reduced waste, lower costs, and improved regulatory compliance, this technology is streamlining operations while ensuring precision and adaptability. As the industry shifts toward smarter manufacturing solutions, inline buffer formulation is paving the way for the future of pharmaceutical production. How Inline Buffer Formulation is Changing the Industry Nainesh, who has over 40 years in the pharmaceutical industry and six years at Asahi Kasei, highlights the evolution of buffer preparation. "Traditionally, buffer dilution involved a concentrate formulated in advance, which was then diluted with water to achieve the desired solution.” Modern inline buffer formulation transforms this process by enabling real-time mixing of individual components. "Instead of storing pre-made buffer solutions, MOTIV allows for real-time formulation using individual components. The system precisely combines these ingredients on demand, ensuring accuracy and eliminating storage-related inefficiencies," Shah explains. Enhanced Efficiency, Cost Savings, and Waste Reduction The advantages of MOTIV extend beyond storage and formulation flexibility. "With traditional methods, production can be delayed if pre-made buffers aren’t readily available. If a change in concentration or formulation is required, additional time is needed for sourcing and preparation," Shah notes. "With MOTIV, you can use a single concentrated solution to create multiple buffer variants by adjusting the dilution ratio. This eliminates the need for multiple pre-concentrated stocks, reducing storage space, waste and increasing efficiency." Cost efficiency is another crucial factor. "Return on investment (ROI) depends on whether the facility has an existing buffer preparation setup or is installing a fresh system. For existing setups, ROI typically takes around two years due to transition considerations. However, for new installations, ROI can be achieved within 1.5 years," Shah states. He adds that Asahi Kasei provides an easy-to-use ROI calculator to help companies assess their financial benefits. Additionally, inline buffer formulation improves sustainability by minimizing waste and reducing the environmental impact of excess buffer storage. By eliminating the need for large buffer stockpiles, facilities can lower their material costs and optimize resource utilization. Scalability and Customization for Diverse Production Needs One of the standout advantages of the MOTIV inline buffer formulation system is its scalability. "Our smallest system supports up to 1,200 liters per hour with three inlets—one for water and two for concentrates like acid, base, or salt solutions. On the higher end, we can scale up to 5,000 or even 12,000 liters per hour, completely customizable with multiple inlets based on customer requirements," says Shah. This flexibility is particularly valuable for pharmaceutical manufacturers with varying production demands. Facilities producing multiple types of buffers can benefit from the system’s adaptability, allowing them to switch formulations with minimal downtime. Instead of maintaining separate storage tanks for different buffer types, inline buffer formulation enables dynamic adjustments based on real-time requirements. Addressing Complex Formulations and Space Constraints MOTIV is particularly beneficial for high-volume buffer requirements and complex formulations. "As pharmaceutical processes advance, buffers require multiple ingredients, not just simple acid-base-salt combinations. MOTIV automates these complex formulations with precision, ensuring consistency while reducing human error," says Shah. Moreover, these systems help optimize space usage. Traditional buffer preparation requires large storage tanks, which can be a logistical challenge for facilities with limited space. By replacing bulky storage units with a compact inline formulation system, pharmaceutical companies can free up valuable floor space for other critical operations, leading to improved overall facility efficiency. Streamlining Global Operations and Regulatory Compliance MOTIV enables pharmaceutical companies to streamline global operations. "A single facility’s buffer formulation data can be easily transferred to other locations, reducing the need for redundant validation and documentation. This simplifies global production expansion while maintaining quality and compliance," says ...
    続きを読む 一部表示
    20 分
まだレビューはありません