
Azure Databricks: The Unified Engine Behind Modern Data & AI Workloads
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Welcome back to TechTalks with Manoj — the show where we get past the buzzwords and dig into what’s actually powering modern cloud-native architectures.
Today, we’re talking about a platform that quietly glues together data engineering, machine learning, SQL analytics, and even generative AI — all under one hood. Yep, we’re diving into Azure Databricks.
This isn’t just another Spark wrapper or a BI tool with dashboards. It’s a unified engine that lets you build pipelines, train models, query with SQL, stream live data, and fine-tune LLMs — all in the same ecosystem.
If you’ve ever bounced between Synapse, Spark clusters, ML tools, and governance messes — Databricks might just be the control plane you didn’t know you needed.
Here’s what we’re breaking down today:
* What makes Azure Databricks more than “just Spark” — and how it evolved with Microsoft
* Key concepts like workspaces, clusters, notebooks, and jobs — the real building blocks
* The Big 5 workloads: data engineering, ML, SQL/BI, streaming, and generative AI
* How Delta Lake, Auto Loader, and Unity Catalog simplify even complex pipelines
* The data governance story — with Unity Catalog and Microsoft Purview working together
* Real-world examples — from bronze-silver-gold dataflows to LLM-powered RAG pipelines
* Cost control tips, cluster tuning insights, and scaling patterns you can actually use
Whether you’re a data engineer dealing with broken pipelines or an architect trying to unify governance, compute, and AI under one strategy — this episode will help you connect the dots.
Let’s jump in.
Thanks for reading! Subscribe for free to receive new posts and support my work.
This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit manojknewsletter.substack.com