エピソード

  • Epigenetic Aging Markers Predict Colorectal Cancer Risk in Postmenopausal Women
    2025/08/19
    BUFFALO, NY — August 19, 2025 — A new #research paper was #published in Volume 17, Issue 7 of Aging (Aging-US) on July 7, 2025, titled “Epigenetic age and accelerated aging phenotypes: a tumor biomarker for predicting colorectal cancer.” In this study led by Su Yon Jung from the University of California, Los Angeles, researchers found a strong association between accelerated epigenetic aging and an increased risk of colorectal cancer in postmenopausal women. The study also indicated that lifestyle factors influence this risk. Colorectal cancer is one of the leading causes of cancer-related deaths worldwide, particularly in people over the age of 50. However, individuals do not all age at the same biological rate. Two people of the same chronological age can differ in their biological aging, which reflects the condition of their cells and tissues. This study focused on a specific measure of biological aging known as epigenetic aging, which is based on chemical changes to DNA. The researchers used data from the Women’s Health Initiative Database for Genotypes and Phenotypes (WHI-dbGaP), which includes genetic and health information from postmenopausal white women aged 50 to 79. They applied three established “epigenetic clocks” to estimate epigenetic age from blood samples collected up to 17 years before a colorectal cancer diagnosis. These clocks measure how quickly a person is aging at the molecular level by tracking DNA methylation. Women with a higher epigenetic age than expected were significantly more likely to develop colorectal cancer “[…]we examined biological aging status in PBLs via three well-established epigenetic clocks—Horvath’s, Hannum’s and Levine’s […].” The study also explored the role of lifestyle in modifying this risk. Women who consumed more fruits and vegetables showed no increased risk, even if they were epigenetically older. In contrast, women with both lower fruit and vegetable intake and signs of accelerated aging were up to 20 times more likely to develop colorectal cancer. This suggests that a healthy diet may help reduce cancer risk associated with biological aging. Another key finding involved women who had both ovaries removed before natural menopause. These women had a higher epigenetic age and, when combined with accelerated aging, a greater likelihood of developing colorectal cancer. This highlights the potential influence of hormonal and reproductive factors on aging and disease risk. The researchers validated their findings across several independent datasets, supporting the potential of blood-based epigenetic aging markers as early indicators of colorectal cancer risk. These markers could help guide early detection and prevention strategies in aging populations. However, the authors emphasize the need for independent large-scale replication studies. Overall, this study contributes to a better understanding of the association between epigenetic aging and cancer. It also supports the idea that modifiable lifestyle factors may reduce disease risk, even among those aging more rapidly at the cellular level. DOI - https://doi.org/10.18632/aging.206276 Corresponding author - Su Yon Jung - sjung@sonnet.ucla.edu Video short - https://www.youtube.com/watch?v=cq1MphQKmSk Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Skin Rejuvenation: How Young Blood and Bone Marrow Influence It
    2025/08/18
    A new #study published as the #cover of Aging (Aging-US) Volume 17, Issue 7, explores how factors in young human blood may affect the biological age of human skin. Researchers from Beiersdorf AG, Research and Development Hamburg in Germany, used a microphysiological co-culture system—a lab-based model simulating human circulation—to test the effects of young versus old blood serum on skin cells. The findings suggest that bone marrow-derived cells play a key role in converting blood-borne signals into effects that support skin rejuvenation. Understanding Skin Aging and Systemic Influence As we age, the skin’s ability to regenerate declines, while its biological age increases. This contributes to visible signs of aging and a weakened barrier function. While cosmetic treatments can improve appearance, they rarely target the cellular processes underlying skin aging. Animal studies have shown that exposure to young blood can promote tissue repair and rejuvenation, likely due to molecules circulating in the bloodstream. However, reproducing these effects in human skin has proven difficult. Applying young serum directly to skin tissue has not produced significant results, indicating that additional cellular interactions may be required. Full blog - https://aging-us.org/2025/08/skin-rejuvenation-how-young-blood-and-bone-marrow-influence-it/ Paper DOI - https://doi.org/10.18632/aging.206288 Corresponding author - Elke Grönniger - elke.groenniger@beiersdorf.com Video short - https://www.youtube.com/watch?v=_4spcgzPcEk Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206288 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, skin rejuvenation, microphysiological systems, systemic factors, bone marrow model, human serum To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    6 分
  • Frailty Linked to Higher Risk of Respiratory Complications and Death in Smokers
    2025/08/14
    BUFFALO, NY — August 14, 2025 — A new #research paper was #published in Volume 17, Issue 7, of Aging (Aging-US) on July 3, 2025, titled “Frailty associates with respiratory exacerbations and mortality in the COPDGene cohort.” In this study, led by first author Eleanor Kate Phillips from Brigham and Women’s Hospital and corresponding author Dawn L. DeMeo from Brigham and Women’s Hospital and Harvard Medical School, researchers investigated how frailty impacts lung health and survival in individuals with a history of cigarette smoking. They found that frailty raises the risk of lung attacks and death, even in smokers with preserved lung function. This result shows why all current and former smokers should be checked for frailty. Frailty is a condition that makes the body more vulnerable to illness, especially in older adults. This study focused on more than 2,600 adults with a history of heavy smoking, many of whom showed no signs of lung damage on standard tests. At the second follow-up visit, participants were categorized as robust, prefrail, or frail and followed for about three years. Researchers tracked how often they experienced respiratory attacks, such as episodes of severe coughing or breathlessness, and whether they survived during that period. “COPDGene is a cohort study of individuals aged 45–80 with a minimum 10 pack-year smoking history.” The results showed that people who were frail had a three- to five-fold higher chance of developing serious or frequent respiratory attacks compared to those who were robust. These risks were not limited to people with chronic lung disease. In fact, many frail participants with normal lung function still faced a significantly higher chance of lung attacks and death. Even those in the “prefrail” stage, a milder form of frailty, were more likely to experience health complications. The research team also found that frailty was associated with an accelerated pace of biological aging, measured using a DNA-based test called DunedinPACE. This supports the idea that frailty may reflect deeper biological changes in the body that go beyond what traditional lung function tests can detect. These findings challenge the idea that standard lung tests can rule out future respiratory complications in people with a history of smoking. Altogether, the study shows that simple frailty checks could help identify early health problems, allowing for timely interventions that may prevent hospitalizations and potentially save lives. The study suggests that frailty screening may be a valuable tool in public health efforts to reduce respiratory disease and improve outcomes for aging adults. DOI - https://doi.org/10.18632/aging.206275 Corresponding author - Dawn L. DeMeo - redld@channing.harvard.edu Video short - https://www.youtube.com/watch?v=G1XQhQN6PQ8 Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206275 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, frailty, cigarette smoking, respiratory exacerbations, COPD, epigenetic aging To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Exercise May Slow Epigenetic Aging
    2025/08/12
    BUFFALO, NY — August 12, 2025 — A new #research perspective was #published in Aging (Aging-US) on July 8, 2025, titled “Exercise as a geroprotector: focusing on epigenetic aging.” In this perspective, led by Takuji Kawamura from Tohoku University, researchers reviewed existing evidence from scientific studies showing that regular exercise, physical activity, and fitness may influence epigenetic aging and potentially reverse it, offering a promising way to extend healthspan and improve long-term health. Epigenetic aging refers to changes in the body’s DNA that reflect how quickly a person is aging at the molecular level. It is measured using epigenetic clocks, which analyze patterns of DNA methylation, a chemical modification that can affect gene activity. Unlike chronological age, which simply counts the number of years lived, epigenetic aging presents a more accurate picture of how well the body’s cells and tissues are functioning. This process is influenced by various factors, including lifestyle, and has become a powerful tool for studying aging. This perspective highlights that while general physical activity, such as walking or doing household tasks, offers health benefits, structured exercise routines that are planned, repetitive, and goal-directed appear to have stronger effects on slowing epigenetic aging. Physical fitness, especially high cardiorespiratory capacity, is also closely associated with slower epigenetic aging. The authors also discuss key findings from both human and animal studies. In mice, structured endurance and resistance training reduced age-related molecular changes in muscle tissue. In humans, multi-week exercise interventions demonstrated reductions in biological age markers in blood and skeletal muscle. One study found that sedentary middle-aged women reduced their epigenetic age by two years after just eight weeks of combined aerobic and strength training. Another study showed that older men with higher oxygen uptake levels, a key measure of cardiovascular fitness, had significantly slower epigenetic aging. “These findings suggest that maintaining physical fitness delays epigenetic aging in multiple organs and supports the notion that exercise as a geroprotector confers benefits to various organs.” The research also examines which organs benefit most from exercise. While skeletal muscle has been a central focus, new evidence shows that regular physical training may also slow aging in the heart, liver, fat tissue, and even the gut. In addition, Olympic athletes were found to have slower epigenetic aging than non-athletes, suggesting that long-term, intensive physical activity may have lasting anti-aging effects. The authors call for further research to understand why some individuals respond more strongly to exercise than others and how different types of training influence aging in various organs. They also point out the importance of developing personalized exercise programs to maximize anti-aging benefits. Overall, the findings support the growing recognition that maintaining physical fitness is not only essential for daily health but may also serve as one of the most effective tools for slowing the body’s internal aging process. DOI - https://doi.org/10.18632/aging.206278 Corresponding author - Takuji Kawamura - takuji.kawamura.b8@tohoku.ac.jp Video short - https://www.youtube.com/watch?v=Wro3_wBovdE To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Aging (Aging-US) Supports Landmark Senescence and Aging Research Events in Rome
    2025/08/11
    BUFFALO, NY — August 11, 2025 — Aging (Aging-US) is proud to support a milestone event for the global senescence and aging research community. This coming September 16-19, 2025, Rome, Italy will host two back-to-back events that will define the next chapter of senescence science and translation: -10th Annual International Cell Senescence Association (ICSA) Conference -Senotherapeutics Summit – organized with the Phaedon Institute This combined program could not come at a more important time. The field is entering a transformative phase: -Multiple clinical trials on senolytics and senomorphics are now reporting results, offering the first real-world evidence of their therapeutic potential. -Exciting new discoveries in senescence mechanisms, biomarkers, and tissue-specific roles are reshaping our understanding of when and how to target these cells. For the first time, the leading fundamental science meeting on cellular senescence will be directly connected with a global summit dedicated to the clinical and commercial development of senotherapeutics. This unique integration will allow participants to seamlessly move from bench to bedside discussions, exploring both the latest research and its translation into therapies that could transform how we approach aging and age-related diseases. Highlights include: -Keynotes from pioneers driving both discovery science and translational innovation -Sessions on mechanisms, biomarkers, and emerging targets -Industry and regulatory panels on clinical trial design, safety, and approval pathways -Case studies from ongoing and completed human trials -Networking with leaders from academia, biotech and pharma Celebrate a decade of ICSA and help chart the path for the next generation of senescence science and therapeutics. Registration is still open: https://icsa2025rome.com/ To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    3 分
  • Young Human Blood Serum Factors Show Potential to Rejuvenate Skin Through Bone Marrow
    2025/08/01
    BUFFALO, NY — August 1, 2025 — A new #research paper featured on the #cover of Volume 17, Issue 7 of Aging (Aging-US) was #published on July 25, 2025, titled “Systemic factors in young human serum influence in vitro responses of human skin and bone marrow-derived blood cells in a microphysiological co-culture system.” The study, led by first author Johanna Ritter and corresponding author Elke Grönniger from Beiersdorf AG, Research and Development Hamburg, shows that components in young human blood serum can help restore youthful properties to skin, but only when bone marrow cells are also present. This discovery highlights the role of bone marrow in supporting skin health and may allow for novel approaches aimed at slowing or reversing visible signs of aging. The research explored how factors present in blood serum, already known to influence aging in animal studies, act on human cells. Using an advanced system that mimics human circulation, the researchers connected a 3D skin model with a 3D bone marrow model. They found that young human serum alone was not enough to rejuvenate skin. However, when bone marrow cells were present, these serum factors changed the activity of those cells, which then secreted proteins that rejuvenated skin tissue. “Interestingly, we detected a significant increase in Ki67 positive cells in the dynamic skin model co-cultured with BM model and young serum compared to the model co-cultured with BM and old serum, indicating an improved regenerative capacity of the tissue.” Detailed analysis indicated that young serum stimulated the bone marrow to produce a group of 55 proteins, with 7 of them demonstrating the ability to boost cell renewal, collagen production, and other features associated with youthful skin. These proteins included factors that improved energy production in cells and reduced signs of cellular aging. Without the interaction between skin and bone marrow cells, these rejuvenating effects did not occur. This finding explains why earlier experiments in mice, where young and old animals shared a blood supply, showed rejuvenation across organs. It suggests that bone marrow-derived cells are critical messengers that transform signals from blood into effects on other tissues, including the skin. While these results are preclinical and not from human trials, they offer a starting point for new strategies in regenerative medicine and skin care. By identifying specific proteins that may carry rejuvenating signals, the study points to a new way to address age-related changes. Researchers emphasize that further studies will be needed to confirm these effects in humans and to test how these proteins can be safely and effectively applied in future therapies. Overall, this research is an important step in understanding how young blood serum factors influence human tissue and could guide the development of novel methods to maintain healthier skin as people age. DOI - https://doi.org/10.18632/aging.206288 Corresponding author - Elke Grönniger - elke.groenniger@beiersdorf.com Video short - https://www.youtube.com/watch?v=_4spcgzPcEk Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206288 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分
  • Study in Twins Links Childhood Environment to Epigenetic Aging and Cognitive Decline
    2025/07/30
    BUFFALO, NY — July 30, 2025 — A new #research paper was #published in Aging (Aging-US) on July 23, 2025, titled “Second generation DNA methylation age predicts cognitive change in midlife: the moderating role of childhood socioeconomic status.” In this study, led by Sophie A. Bell and Eric Turkheimer from the University of Virginia, researchers investigated how biological aging, measured through DNA methylation, is connected to changes in thinking skills during midlife and whether childhood socioeconomic status influences this relationship. Biological age provides a picture of how the body is aging that goes beyond simply counting years. In this study, researchers used both first- and second-generation DNA methylation clocks—tools that track chemical changes in DNA as markers of aging. GrimAge and PhenoAge, the second-generation clocks designed to reflect broader health and aging processes, were more accurate at predicting long-term changes in Intelligence Quotient (IQ) than the first-generation models that only estimated chronological age. The study analyzed 287 participants from the Louisville Twin Study, which is a long-term project that has followed twins from childhood into midlife. “DNAmAge was estimated with five commonly used algorithms, or epigenetic clocks (Horvath, Horvath Skin and Blood, GrimAge, and PhenoAge).” The results showed that twins with more rapid epigenetic aging had a larger drop in IQ scores. This pattern remained even after considering genetic background and early family environment, made possible by the twin-based design. Importantly, the relationship was strongest in twins who had grown up in families with lower socioeconomic status. This finding suggests that early-life disadvantage may make individuals more vulnerable to the effects of biological aging on brain health. This research adds knowledge to earlier work showing that childhood poverty can influence long-term health. It also highlights the value of second-generation epigenetic clocks as early indicators of brain aging. Unlike the first generation of clocks, these newer tools capture broader biological changes such as inflammation, disease risk, and behaviors like smoking. Although smoking partly explained the results because it strongly influences DNA methylation, it did not fully account for the association between accelerated biological aging and cognitive decline. This suggests that both life experiences and lifestyle factors shape body and brain aging. By combining decades of developmental data with a genetically informed twin design, the study provides new evidence that biological aging, especially when shaped by childhood adversity, is a key factor in midlife cognitive decline. These findings may inform early health strategies that consider both social and biological risks and support the use of second-generation methylation clocks to predict age-related cognitive changes. DOI - https://doi.org/10.18632/aging.206284 Corresponding authors - Sophie A. Bell - bvf7pa@virginia.edu, and Eric Turkheimer - ent3c@virginia.edu Video short - https://www.youtube.com/watch?v=vopDdS1olXw Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206284 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    3 分
  • TraMA: New RNA-Based Measure Predicts Mortality Risk and Tracks Aging
    2025/07/28
    BUFFALO, NY — July 28, 2025 — A new #research paper was #published in Aging (Aging-US) Volume 17, Issue 6, on June 13, 2025, titled “Development of a novel transcriptomic measure of aging: Transcriptomic Mortality-risk Age (TraMA).” In this study, led by Eric T. Klopack from the University of Southern California, researchers created a new RNA-based aging measure that predicts health risks and mortality. This measure, called Transcriptomic Mortality-risk Age (TraMA), uses gene expression data to estimate a person’s biological aging. This finding offers a new and potentially more accurate way to track aging and understand health risks, especially for older adults. Aging is a complex biological process that affects multiple systems in the body and increases the risk of disease and death. Scientists have long looked for reliable ways to measure biological aging. While DNA methylation and blood biomarkers are commonly used, this study focused on RNA—a molecule that reflects gene activity. By analyzing RNA sequencing data from nearly 4,000 U.S. adults aged 50 and older, the team developed TraMA to predict the probability of dying within four years. TraMA proved to be a strong and independent predictor of early death, multiple chronic diseases, poor cognitive function, and difficulties with daily activities. It was also tested in another large group of long-lived families and in several smaller datasets from patients with conditions like diabetes, sepsis, and cancer. The results confirmed the tool’s usefulness across different populations and health conditions. “TraMA was also externally validated in the Long Life Family Study and several publicly available datasets.” Unlike earlier RNA-based aging measures, which were often built using small or non-representative samples, TraMA was developed using modern RNA sequencing technology results and a nationally representative dataset. This increases its reliability and potential for broad public health applications. The tool also demonstrated unique advantages over popular biological aging measures like GrimAge and PhenoAge, capturing distinct aspects of aging and health decline. Importantly, TraMA tracks biological processes related to inflammation, immune function, and kidney and brain health, systems that play key roles in aging. It was also sensitive to behavioral and socioeconomic factors. For instance, smoking, obesity, and low physical activity were associated with older TraMA scores. TraMA was also sensitive to changes in biological aging. In one study, researchers measured TraMA at two different time points and found that the more recent scores were better at predicting who would die. This suggests that TraMA can track changes in a person’s aging as their health evolves. It also performed well in both large-scale surveys and small clinical samples, making it a useful tool in many types of research. By offering a new, accurate, and flexible method for measuring biological aging, TraMA may help researchers better understand how genes, lifestyle, and environment influence aging. This tool opens the door to more precise research on improving health and extending lifespan. DOI - https://doi.org/10.18632/aging.206272 Corresponding author - Eric T. Klopack - klopack@usc.edu Video short - https://www.youtube.com/watch?v=Tl0CApUz8cU Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts To learn more about the journal, please visit our website at https://www.Aging-US.com​​ and connect with us on social media at: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Bluesky - https://bsky.app/profile/aging-us.bsky.social Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示
    4 分