
Advanced LLM Optimization techniques
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Welcome to another Data Architecture Elevator podcast! Today's discussion is hosted by Paolo Platter supported by our experts Antonino Ingargiola and Irene Donato.
In this episode, we explore effective strategies for optimizing large language models (LLMs) for inference tasks with multimodal data like audio, text, images, and video.
We discuss the shift from online APIs to hosted models, choosing smaller, task-specific models, and leveraging fine-tuning, distillation, quantization, and tensor fusion techniques. We also highlight the role of specialized inference servers such as Triton and Dynamo, and how Kubernetes helps manage horizontal scaling.
Don't forget to follow us on LinkedIn! Enjoy!