『AI Scaling Laws, DeepSeek’s Cost Efficiency & The Future of AI Training』のカバーアート

AI Scaling Laws, DeepSeek’s Cost Efficiency & The Future of AI Training

AI Scaling Laws, DeepSeek’s Cost Efficiency & The Future of AI Training

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

In this first episode of Gradient Descent, hosts Vishnu Vettrivel (CTO of Wisecube AI) and Alex Thomas (Principal Data Scientist) discuss the rapid evolution of AI, the breakthroughs in LLMs, and the role of Natural Language Processing in shaping the future of artificial intelligence. They also share their experiences in AI development and explain why this podcast differs from other AI discussions.Chapters: 00:00 – Introduction 01:56 – DeepSeek Overview 02:55 – Scaling Laws and Model Performance 04:36 – Peak Data: Are we running out of quality training data? 08:10 – Industry reaction to DeepSeek 09:05 – Jevons' Paradox: Why cheaper AI can drive more demand 11:04 – Supervised Fine-Tuning vs Reinforcement Learning (RLHF) 14:49 – Why Reinforcement Learning helps AI models generalize 20:29 – Distillation and Training Efficiency 25:01 – AI safety concerns: Toxicity, bias, and censorship 30:25 – Future Trends in LLMs: Cheaper, more specialized AI models? 37:30 – Final thoughts and upcoming topics Listen on:• YouTube: https://youtube.com/@WisecubeAI/podcasts• Apple Podcast: https://apple.co/4kPMxZf• Spotify: https://open.spotify.com/show/1nG58pwg2Dv6oAhCTzab55• Amazon Music: https://bit.ly/4izpdO2 Our solutions: • https://askpythia.ai/ - ⁠LLM Hallucination Detection Tool⁠ • https://www.wisecube.ai - ⁠Wisecube AI⁠ platform for large-scale biomedical knowledge analysisFollow us: • Pythia Website: www.askpythia.ai• Wisecube Website: www.wisecube.ai• Linkedin: www.linkedin.com/company/wisecube• Facebook: www.facebook.com/wisecubeai• Reddit: www.reddit.com/r/pythia/Mentioned Materials: - Jevons’ Paradox: https://en.wikipedia.org/wiki/Jevons_paradox - Scaling Laws for Neural Language Models: https://arxiv.org/abs/2001.08361- Distilling the Knowledge in a Neural Network: https://arxiv.org/abs/1503.02531 - SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training: https://arxiv.org/abs/2501.17161 - DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning: https://arxiv.org/abs/2501.12948 - Reinforcement Learning: An Introduction (Sutton & Barto): https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

AI Scaling Laws, DeepSeek’s Cost Efficiency & The Future of AI Trainingに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。