『632nm』のカバーアート

632nm

632nm

著者: Misha Shalaginov Michael Dubrovsky Xinghui Yin
無料で聴く

このコンテンツについて

Technical interviews with the greatest scientists in the world.© 2025 Misha Shalaginov, Michael Dubrovsky, Xinghui Yin 博物学 科学 自然・生態学
エピソード
  • Is Quantum Computing a Waste of Money? | Former Google Quantum's Austin Fowler
    2025/12/09

    Would we get a quantum computer sooner if everything was open source?

    In this episode, we speak with Austin Fowler, one of the architects of quantum error correction and a pioneer of the surface code used in today’s leading quantum computers. Fowler helped lay the groundwork for scalable, fault-tolerant computation at Google Quantum AI, before leaving to advocate for a more open and collaborative model of research.

    He explains why building a useful quantum computer will require millions of reliable qubits, why no known algorithm yet clearly outperforms classical computation, and why the field’s current competitive funding model may be slowing progress instead of accelerating it. From the engineering challenges of superconducting qubits to the economics of global research, Fowler offers a candid, inside look at the state of quantum technology.

    We explore the history and promise of quantum error correction, the software bottlenecks that still stand in the way, and how an open-source, international approach — modeled on CERN or the International Space Station — could transform the field. Along the way, Fowler reflects on his time at Google, the importance of collaboration, and what it will really take to make quantum computing practical.

    Whether you’re interested in quantum hardware, physics, computer science, or research policy, this conversation reveals the technical, ethical, and economic realities behind one of today’s most ambitious scientific pursuits.

    Follow us for more technical interviews with the world’s greatest scientists:

    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Misha Shalaginov: https://x.com/MYShalaginov
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: [https://www.632nm.com](https://www.632nm.com/)

    Timestamps:
    00:00 - Intro
    01:40 - Austin’s Longevity in Quantum
    02:31 - What’s the Goal of Quantum Computing?
    05:01 - Creating Fault-Tolerant Qubits
    06:55 - Advantages of 2D Surface Code
    08:47 - Austin’s Journey into Quantum
    16:32 - Working at Google
    20:14 - Alternatives to Surface Codes
    22:18 - Should Quantum Computing Be Open Source?
    25:20 - Quantum Computing is Eating Itself
    30:52 - Open Source as a Mission
    35:46 - Advice for People Getting into TQEC
    39:03 - Bit Flips vs Phase Flips
    45:43 - History of Surface Codes
    49:05 - From Surface Code to Fault Tolerance
    57:19 - What Software do Quantum Computers Need?
    1:00:17 - Quantum vs Classical Error Correction
    1:05:57 - Manufacturing Superconducting Qubits
    1:12:02 - Noise Models in Software
    1:21:21 - How do NISQ Experiments help us Build Better Computers?
    1:24:01 - State of the Art Topological QEC
    1:31:38 - How did the TQEC Community Begin?
    1:34:46 - Future of TQEC
    1:36:03 - Quantum AI
    1:37:58 - Advice for Young Scientists
    1:41:35 - Underrated Quantum Research
    1:47:21 - What are the Most Important Upcoming Developments?

    続きを読む 一部表示
    1 時間 50 分
  • Why Syncing Atomic Clocks is Virtually Impossible | Judah Levine on UTC
    2025/11/26

    Why is syncing atomic clocks still one of the hardest problems in physics and engineering?

    In this episode, we speak with Judah Levine—legendary NIST physicist and one of the key architects of modern timekeeping—about the invisible systems that hold the digital world together. Levine explains why synchronizing atomic clocks across the planet is far more complex than the clocks themselves, and why seemingly simple ideas like “round-trip delay” break down in real-world media such as fiber optics and the internet.

    We explore how UTC is built from hundreds of atomic clocks, the difference between keeping time and *transferring* time, and the surprising challenges introduced by asymmetric delays, chromatic dispersion, and environmental noise. Levine walks us through the evolution of cesium clocks, the rise of optical clocks, and the technologies that make GPS, finance, power grids, and global communication possible.

    Along the way, we discuss the history of time synchronization, from railroad schedules to radio frequencies to modern satellite systems; the ongoing debate over leap seconds; and why the future of precision timing depends not just on better clocks, but on better *engineering* to deliver those clocks’ performance to the real world.

    Whether you’re curious about atomic clocks, relativity, fiber optics, GPS, the structure of time itself, or the hidden physics behind everyday technology, this conversation offers a rare look at how science, engineering, and careful statistical thinking keep modern civilization in sync—down to the nanosecond.

    Follow us for more technical interviews with the world’s greatest scientists:

    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Misha Shalaginov: https://x.com/MYShalaginov
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: [https://www.632nm.com](https://www.632nm.com/)

    Timestamps:
    00:00 – Intro
    01:03 – What is UTC?
    05:50 – Timekeeping for Satellites
    07:08 – How Radio Created Better Clocks
    18:32 – From Astronomy to Atoms
    25:25 – Why are there 24 Hours in a Day?
    29:55 – Why Synchronizing Clocks is so Hard
    47:09 – How did Judah get into Clocks?
    53:29 – Is UTC Vulnerable to Hackers?
    1:06:41 – Cesium vs Optical Atomic Clocks
    1:11:23 – How Cesium Clocks Work
    1:23:35 – Why Cesium Clocks are Imperfect
    1:26:17 – Judah’s 3 Year Experiment
    1:29:30 – Statistics with Clocks
    1:33:40 – Is Time Real?
    1:36:29 – Is the Universe Slowing Down?
    1:40:29 – Atomic Time and General Relativity
    1:42:17 – What’s Left for Atomic Clocks?
    1:54:34 – What would Judah do with Unlimited Funding?
    1:58:57 – Judah's Past in Programming
    2:02:55 – Advice for Young Scientists

    続きを読む 一部表示
    2 時間 4 分
  • Can We Predict History Like the Weather? | Peter Turchin on Cliodynamics
    2025/11/04

    Why do civilizations rise, prosper, and then collapse? Here's what the math tells us.

    In this episode, we sit down with Peter Turchin, complexity scientist and founder of the field of cliodynamics, which uses data and mathematical models to study the long-term cycles of history. Turchin explains his theory of elite overproduction, how societies generate too many ambitious, educated elites competing for too few positions, and why this dynamic reliably leads to polarization, inequality, and political turmoil.

    We explore how his structural-demographic theory maps the recurring “boom and bust” rhythms that have shaped civilizations from ancient Rome to modern America, the role of military competition in driving cooperation and social complexity, and how new tools—from AI-assisted historical databases to ancient DNA and LiDAR—are transforming the study of the past.

    Whether you’re drawn to history, sociology, complexity science, or the fate of modern democracies, this conversation reveals how Turchin’s quantitative approach offers a new way to understand—and maybe even forecast—the forces that make societies rise and fall.

    Follow us for more technical interviews with the world’s greatest scientists:

    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Misha Shalaginov: https://x.com/MYShalaginov
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: https://www.632nm.com

    Timestamps:

    00:00 - Intro
    01:48 - Overproduction of Elites
    10:56 - Did Models Predict the Rise of Trump?
    20:43 - Is Russian History Repeating in the US?
    26:48 - How Competition Stabilizes Societies
    32:14 - What Data Goes into Cliodynamic Models?
    38:13 - How New Technologies Shaped Archaeology
    43:28 - Can Historians Build Mathematical Intuitions?
    47:59 - What Questions can be Answered with Cliodynamics?
    52:23 - Does the NYC Mayoral Race Fit into Turchin's Theory?
    56:37 - Is Fear of China Bringing Us Together?
    58:29 - Do Historians Reject Turchin’s Work?
    1:00:03 - Trends in Civilizations and Outliers
    1:03:29 - Calvary and the Evolution of Societies
    1:10:03 - Is Evolution via Natural Selection a Suitable Analog for History?
    1:15:16 - Could Turchin's Ideas Be Misinterpreted Dangerously?

    続きを読む 一部表示
    1 時間 18 分
まだレビューはありません