『632nm』のカバーアート

632nm

632nm

著者: Misha Shalaginov Michael Dubrovsky Xinghui Yin
無料で聴く

概要

Technical interviews with the greatest scientists in the world.© 2026 Misha Shalaginov, Michael Dubrovsky, Xinghui Yin 博物学 科学 自然・生態学
エピソード
  • How Visual Experience Rewires the Brain | Mark Bear on Neuroplasticity
    2026/02/03

    How does experience rewire the brain—and why is vision the ideal system for understanding neuroplasticity?

    In this episode, we speak with Mark Bear, MIT neuroscientist and a pioneer in the study of experience-dependent plasticity. Bear explains how the visual cortex became a model system for uncovering the synaptic mechanisms that allow the brain to change, adapt, and learn, especially during early development.

    We explore how visual experience shapes neural circuits, why the brain undergoes critical periods of heightened plasticity, and what classic experiments in visual deprivation revealed about how connections are strengthened or lost. Bear walks us through the discovery of binocular vision in the cortex, the role of inhibition in closing critical periods, and how these ideas reshaped our understanding of learning and memory.

    The conversation also covers modern views of cortical plasticity, including perceptual learning, visual recognition memory, and how the brain distinguishes familiar from novel stimuli. Bear discusses how insights from vision extend to broader questions about brain development, neurological disorders such as amblyopia, and whether adult plasticity can be reopened.

    Whether you’re interested in neuroscience, brain development, neuroplasticity, learning and memory, or the biology of vision, this episode offers a clear and authoritative look at how experience shapes the brain at the level of neural circuits and synapses.

    Follow us for more technical interviews with the world’s greatest scientists:

    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Mikhail Shalaginov: https://x.com/MYShalaginov
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: https://www.632nm.com

    Timestamps:
    00:00 - Intro
    00:54 - Neuroplasticity in the Visual Cortex
    05:45 - Critical Periods for Neuroplasticity
    16:50 - Brain Development in Blind People
    19:25 - Hallucinations and Sensory Deprivation
    25:36 - How Mark’s Vision Disorder Led Him to a Career in Neuroscience
    31:35 - Intro to the Visual System
    35:52 - Visual System Processing
    40:52 - Pop Science Neuroplasticity
    45:00 - Memory Enhancing Pharmaceuticals
    50:18 - Other Ways of Modifying the Visual Cortex
    1:14:50 - Declarative vs Procedural Memory
    1:22:36 - Neural Networks and Memory Degradation
    1:25:16 - Neuron Transplants and Neurogenesis
    1:28:58 - Brain-Machine Interfaces
    1:33:46 - Most Prominent Issues in the Field
    1:40:47 - Fragile X Syndrome
    1:51:10 - Advice for Young Scientists

    #neuroplasticity #neuroscience #hubermanlab #braindevelopment #brainplasticity

    続きを読む 一部表示
    1 時間 56 分
  • Snell's Law, Metasurfaces, and Metalenses | Federico Capasso
    2026/01/20

    How can flat surfaces shape light as powerfully as bulky lenses?

    In this episode, we speak with Federico Capasso, Harvard physicist and pioneer of metasurfaces, metalenses, and nanophotonics. Capasso traces the path from his work at Bell Labs on quantum cascade lasers to the invention of metasurface optics, showing how a practical challenge—collimating light without traditional lenses—sparked a new way to control light.

    We explore the physics behind metasurfaces and generalized Snell’s law, explaining how subwavelength structures enable precise control of wavefronts, phase, and polarization beyond what conventional diffractive optics or Fresnel lenses allow. Capasso clarifies common misconceptions, contrasts metasurfaces with diffraction gratings and phased arrays, and emphasizes the importance of physical intuition and simplicity.

    The conversation covers metalenses, polarization optics, holography, and how these ideas moved from theory to large-scale manufacturing in semiconductor foundries, ultimately appearing in consumer devices like smartphones. Capasso also reflects on commercialization, the legacy of Bell Labs, and the blurred boundary between basic science and real-world technology.

    Whether you’re interested in metasurfaces, metalenses, nanophotonics, optics, or the process behind breakthrough discoveries, this episode offers a clear and insightful look at how modern optical physics becomes transformative technology.

    Follow us for more technical interviews with the world’s greatest scientists:
    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Mikhail Shalaginov: https://x.com/MYShalaginov
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: [https://www.632nm.com](https://www.632nm.com/)

    Timestamps:
    00:00 - Intro
    01:53 - Transition from Bell Labs to Harvard
    09:45 - Generalized Snell's Law
    21:25 - Facing the Diffractive Optics Community
    31:07 - Benefits of Well-Rounded Education
    45:16 - Metalenses
    55:55 - Can AI do Physics?
    1:07:39 - Industry vs Academia
    1:11:44 - Nanophotonics
    1:14:44 - What Allowed for the First Metalenses?
    1:17:38 - 632nm and Other Lasers
    1:20:47 - Quantum applications of Metalenses
    1:30:14 - Quantum Entanglement Redefines Spacetime
    1:43:22 - Stokes Parameters
    1:48:28 - Limits of Metasurface Pixel Size
    1:55:20 - Advice for Young Scientists
    2:01:45 - Critique of the H Index

    #metasurface #metalenses #quantumphysics #materialscience #optics #photonics

    続きを読む 一部表示
    2 時間 13 分
  • Graphene, Nanotubes, and Quantum Hall Physics | Philip Kim
    2026/01/06

    How do electrons behave when they’re confined to a single layer, and why do entirely new laws of physics emerge when dimensions shrink?

    Papers discussed in this episode:
    Experimental observation of the quantum Hall effect and Berry's phase in graphene: https://www.nature.com/articles/nature04235
    Tunable Fractional Quantum Hall Phases in Bilayer Graphene: https://arxiv.org/abs/1403.2112
    Room-Temperature Quantum Hall Effect in Graphene: https://arxiv.org/abs/cond-mat/0702408

    In this episode, we speak with Philip Kim, Harvard physicist and a leading experimentalist in low-dimensional quantum materials. Kim traces the experimental path from high-temperature superconductors and charge-density waves to carbon nanotubes and the earliest graphene devices, revealing how advances in nanofabrication and quantum transport opened the door to modern 2D materials physics.

    We dive deep into the Hall effect and quantum Hall effect, from their 19th-century origins to the discovery of quantized and fractional conductance, and explain why these effects were found experimentally before they were fully understood theoretically. Kim shares behind-the-scenes stories of early graphene experiments, mechanical exfoliation, Shubnikov–de Haas oscillations, and what it was like to be scooped by the work that launched graphene into the spotlight.

    Along the way, we explore how disorder, dimensionality, and magnetic fields shape electronic behavior; why carbon nanotubes paved the way for graphene; and how many of the most important discoveries in condensed matter physics arise from intuition, timing, and new experimental tools.

    Whether you’re interested in graphene, quantum transport, the quantum Hall effect, nanofabrication, superconductors, or the real stories behind breakthrough discoveries, this conversation offers a rare, technically rich look at how modern quantum materials research actually unfolds.

    Follow us for more technical interviews with the world’s greatest scientists:
    Twitter: https://x.com/632nmPodcast
    Instagram: https://www.instagram.com/632nmpodcast?utm_source=ig_web_button_share_sheet&igsh=ZDNlZDc0MzIxNw==
    LinkedIn: https://www.linkedin.com/company/632nm/about/
    Substack: https://632nmpodcast.substack.com/

    Follow our hosts!
    Mikhail Shalaginov: https://x.com/MYShalaginov
    Michael Dubrovsky: https://x.com/MikeDubrovsky
    Xinghui Yin: https://x.com/XinghuiYin

    Subscribe:
    Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269
    Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6OR
    Website: [https://www.632nm.com](https://www.632nm.com/)

    Timestamps:
    00:00 - Intro
    01:15 - How Philip Began Studying Graphene
    20:06 - Old Methods of Creating Graphene
    32:33 - Hall Effect and Quantum Hall Effect
    48:29 - Philip's Work at Columbia
    52:33 - Philip's First Experiments with Graphene
    1:06:43 - Did Philip Get Scooped from a Discovery?
    1:09:40 - The Power of Scotch Tape
    1:24:57 - High Temperature Quantum Hall Effect
    1:30:18 - Fractional Quantum Hall Effect
    1:41:17 - Collaboration with Particle Physicists
    1:54:13 - Single Layer Graphene
    1:59:44 - Next Gen Electronics with 2D Materials
    2:03:23 - Graphene Twisting
    2:14:48 - Superconductivity in Other Materials
    2:20:06 - Anyons
    2:30:00 - Fault-Tolerant Quantum Computing
    2:36:05 - Can AI and Big Data Help Physicists?
    2:40:47 - What Would Philip Do with Unlimited Resources?
    2:43:44 - Optimizing the Education System

    #graphene #quantumphysics #materialscience #halleffect #electromagnetism

    続きを読む 一部表示
    2 時間 47 分
まだレビューはありません