
Mastering AI Infrastructure and Cyber Security
Practical Applications and Tools for Building Secure AI Systems
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
聴き放題対象外タイトルです。Audibleプレミアムプラン登録で、非会員価格の30%OFFで購入できます。
-
ナレーター:
-
Alfred De La Costa
このコンテンツについて
The book Mastering AI Infrastructure and Cyber Security delves into the crucial aspects of safeguarding artificial intelligence (AI) systems and implementing robust infrastructure for AI applications. The book covers various topics, including AI algorithms, data privacy, cyber security threats, and defensive strategies.
An essential component of the book is the discussion on AI infrastructure. The authors highlight the importance of designing secure, scalable, and efficient systems for deploying AI models. This includes selecting appropriate hardware platforms (e.g., CPUs, GPUs, TPUs), managing data storage, optimizing network communication, and employing parallel computing techniques.
Data Privacy and Security in AI: Data privacy is a critical aspect of AI infrastructure design. The book explores methods to anonymize sensitive data, employ secure data sharing protocols, and adhere to data protection regulations such as GDPR and CCPA. Additionally, it delves into encryption techniques to protect communication channels between AI components and ensure data integrity.
Threats and Vulnerabilities in AI Systems: Mastering AI Infrastructure and Cyber Security sheds light on potential threats to AI systems, including adversarial attacks, model inversion attacks, and data poisoning. These threats can lead to unauthorized access to sensitive information or compromise the system's functionality. Understanding these vulnerabilities is crucial for developing effective countermeasures.
Defensive Strategies for AI Systems: The book offers practical recommendations for securing AI infrastructure against cyber threats.
©2025 Arley Ballenger (P)2025 Arley Ballenger