
Drones and Machine Learning are Changing the Game for Firefighters | Robert Atwood
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
Nova founder and former wildland firefighter Robert Atwood explains how his company is using machine learning to automate the detection of hotspots, turning a complex, multi-hour process into a simple, 10-minute task. Discover how this innovative platform transforms a drone's infrared imagery into a precise "treasure map" for ground crews, integrates seamlessly with the tools firefighters already use, and is changing the standard for declaring a fire "out."
In this episode, you'll learn about:
The Genesis of Nova: How the frustration of manually processing drone data on the fireline led to a machine learning breakthrough.
From "Red Line" to "Treasure Map": The critical shift from a simple perimeter map to a detailed map of every heat source.
The Power of AI: How an ML model trained on 7 million hotspots can find fist-sized heat signatures from 1600 feet in the air.
A Firefighter-First Workflow: The simple process of uploading drone photos and getting an actionable, geo-referenced PDF map in minutes.
The "Year of the Integration": How Nova is connecting with the tools firefighters already love, like Avenza Maps and ATAC.
A New Standard: Why agencies like the Los Angeles Fire Department are now using Nova to scan every brush fire before calling it out.
The "Three-Legged Stool": Why a drone program is incomplete without a way to turn its data into a valuable product.