『Perplexity』のカバーアート

Perplexity

Navigating Uncertainty in the Age of Artificial Intelligence

プレビューの再生
期間限定

2か月無料体験

聴き放題対象外タイトルです。プレミアムプラン登録で、非会員価格の30%OFFで購入できます。
タイトルを¥630 で購入し、プレミアムプランを2か月間無料で試す
期間限定:2025年10月14日(日本時間)に終了
2025年10月14日までプレミアムプラン2か月無料体験キャンペーン開催中。詳細はこちら
オーディオブック・ポッドキャスト・オリジナル作品など数十万以上の対象作品が聴き放題。
オーディオブックをお得な会員価格で購入できます。
無料体験後は月額1,500円で自動更新します。いつでも退会できます。

Perplexity

著者: Sam Zuker
ナレーター: Marcus Hedgecock
タイトルを¥630 で購入し、プレミアムプランを2か月間無料で試す

無料体験終了後は月額1,500円で自動更新します。いつでも退会できます。

¥900 で購入

¥900 で購入

このコンテンツについて

PERPLEXITY: Navigating Uncertainty in the Age of Artificial Intelligence. In our rapidly evolving digital landscape, the concept of perplexity has emerged as a fundamental measure of uncertainty, understanding, and the limits of knowledge. This book explores perplexity not merely as a mathematical concept, but as a lens through which we can examine the nature of intelligence, learning, and human-machine interaction.

As artificial intelligence systems become increasingly sophisticated, our understanding of perplexity becomes crucial for evaluating model performance, designing better algorithms, and ultimately comprehending the boundaries of machine understanding. Yet perplexity extends far beyond the realm of computer science—it touches upon philosophy, psychology, linguistics, and the very essence of what it means to know and understand.

This exploration will take you through the mathematical foundations of perplexity, its applications in natural language processing and machine learning, and its broader implications for how we navigate uncertainty in our personal and professional lives. We'll examine how perplexity manifests in human cognition, decision-making processes, and communication patterns. The journey ahead is one of discovery—not just of perplexity as a concept, but of how embracing uncertainty can lead to deeper insights and more robust understanding.

In a world where information is abundant but wisdom. Perplexity, at its core, represents a state of confusion or uncertainty. In the context of information theory and machine learning, it quantifies how well a probability model predicts a sample. When a model exhibits high perplexity, it indicates greater uncertainty about its predictions. Conversely, low perplexity suggests higher confidence and better predictive accuracy. The term itself derives from the Latin "perplexus," meaning entangled or confused.

©2025 Sam Zuker (P)2025 Sam Zuker
コンピュータサイエンス 機械理論・人工知能
まだレビューはありません