エピソード

  • Why Your Power BI Query is BROKEN: The Hidden Order of Operations
    2025/11/05
    Opening: The Lie Your Power BI Query Tells YouYou think Power BI runs your query exactly as you wrote it. It doesn’t. It quietly reorders your steps like a bureaucrat with a clipboard—efficient, humorless, and entirely convinced it knows better than you. You ask it to filter first, then merge, then expand a column. Power BI nods politely, jots that down, and proceeds to do those steps in whatever internal order it feels like. The result? Your filters get ignored, refresh times stretch into geological eras, and you start doubting every dashboard you’ve ever published.The truth hiding underneath your Apply Steps pane is that Power Query doesn’t actually execute those steps in the visual order you see. It’s a logical description, not a procedural recipe. Behind the scenes, there’s a hidden execution engine shuffling, deferring, and optimizing your operations. By the end of this, you’ll finally see why your query breaks—and how to make it obey you.Section 1: The Illusion of Control – Logical vs. Physical ExecutionHere’s the first myth to kill: the idea that Power Query executes your steps top to bottom like a loyal script reader. It doesn’t. Those “Applied Steps” you see on the right are nothing but a neatly labeled illusion. They represent the logical order—your narrative. But the physical execution order—what the engine actually does—is something else entirely. Think of it as filing taxes: you write things in sequence, but behind the curtain, an auditor reshuffles them according to whatever rules increase efficiency and reduce pain—for them, not for you.Power Query is that auditor. It builds a dependency tree, not a checklist. Each step isn’t executed immediately; it’s defined. The engine looks at your query, figures out which steps rely on others, and schedules real execution later—often reordering those operations. When you hit Close & Apply, that’s when the theater starts. The M engine runs its optimized plan, sometimes skipping entire layers if it can fold logic back into the source system.The visual order is comforting, like a child’s bedtime story—predictable and clean. But the real story is messier. A step you wrote early may execute last; another may never execute at all if no downstream transformation references it. Essentially, you’re writing declarative code that describes what you want, not how it’s performed. Sound familiar? Yes, it’s the same principle that underlies SQL.In SQL, you write SELECT, then FROM, then WHERE, then maybe a GROUP BY and ORDER BY. But internally, the database flips it. The real order starts with FROM (gather data), then WHERE (filter), then GROUP BY (aggregate), then HAVING, finally SELECT, and only then ORDER BY. Power Query operates under a similar sleight of hand—it reads your instructions, nods, then rearranges them for optimal performance, or occasionally, catastrophic inefficiency.Picture Power Query as a government department that “optimizes” paperwork by shuffling it between desks. You submit your forms labeled A through F; the department decides F actually needs to be processed first, C can be combined with D, and B—well, B is being “held for review.” Every applied step is that form, and M—the language behind Power Query—is the policy manual telling the clerk exactly how to ignore your preferred order in pursuit of internal efficiency.Dependencies, not decoration, determine that order. If your custom column depends on a transformed column created two steps above, sure, those two will stay linked. But steps without direct dependencies can slide around. That’s why inserting an innocent filter early doesn’t always “filter early.” The optimizer might push it later—particularly if it detects that folding back to the source would be more efficient. In extreme cases, your early filter does nothing until the very end, after a million extra rows have already been fetched.So when someone complains their filters “don’t work,” they’re not wrong—they just don’t understand when they work. M code only defines transformations. Actual execution happens when the engine requests data—often once, late, and in bulk. Everything before that? A list of intentions, not actions.Understanding this logical-versus-physical divide is the first real step toward fixing “broken” Power BI queries. If the Apply Steps pane is the script, the engine is the director—rewriting scenes, reordering shots, and often cutting entire subplots you thought were essential. The result may still load, but it won’t perform well unless you understand the director’s vision. And that vision, my friend, is query folding.Section 2: Query Folding – The Hidden OptimizerQuery folding is where Power Query reveals its true personality—an obsessive efficiency addict that prefers delegation to labor. In simple terms, folding means pushing your transformations back down to the source system—SQL Server, a Fabric ...
    続きを読む 一部表示
    22 分
  • Your Fabric Data Model Is Lying To Copilot
    2025/11/05
    Opening: The AI That Hallucinates Because You Taught It ToCopilot isn’t confused. It’s obedient. That cheerful paragraph it just wrote about your company’s nonexistent “stellar Q4 surge”? That wasn’t a glitch—it’s gospel according to your own badly wired data.This is the “garbage in, confident out” effect—Microsoft Fabric’s polite way of saying, you trained your liar yourself. Copilot will happily hallucinate patterns because your tables whispered sweet inconsistencies into its prompt context.Here’s what’s happening: you’ve got duplicate joins, missing semantics, and half-baked Medallion layers masquerading as truth. Then you call Copilot and ask for insights. It doesn’t reason; it rearranges. Fabric feeds it malformed metadata, and Copilot returns a lucid dream dressed as analysis.Today I’ll show you why that happens, where your data model betrayed you, and how to rebuild it so Copilot stops inventing stories. By the end, you’ll have AI that’s accurate, explainable, and, at long last, trustworthy.Section 1: The Illusion of Intelligence — Why Copilot LiesPeople expect Copilot to know things. It doesn’t. It pattern‑matches from your metadata, context, and the brittle sense of “relationships” you’ve defined inside Fabric. You think you’re talking to intelligence; you’re actually talking to reflection. Give it ambiguity, and it mirrors that ambiguity straight back, only shinier.Here’s the real problem. Most Fabric implementations treat schema design as an afterthought—fact tables joined on the wrong key, measures written inconsistently, descriptions missing entirely. Copilot reads this chaos like a child reading an unpunctuated sentence: it just guesses where the meaning should go. The result sounds coherent but may be critically wrong.Say your Gold layer contains “Revenue” from one source and “Total Sales” from another, both unstandardized. Copilot sees similar column names and, in its infinite politeness, fuses them. You ask, “What was revenue last quarter?” It merges measures with mismatched granularity, produces an average across incompatible scales, and presents it to you with full confidence. The chart looks professional; the math is fiction.The illusion comes from tone. Natural language feels like understanding, but Copilot’s natural responses only mask statistical mimicry. When you ask a question, the model doesn’t validate facts; it retrieves patterns—probable joins, plausible columns, digestible text. Without strict data lineage or semantic governance, it invents what it can’t infer. It is, in effect, your schema with stage presence.Fabric compounds this illusion. Because data agents in Fabric pass context through metadata, any gaps in relationships—missing foreign keys, untagged dimensions, or ambiguous measure names—are treated as optional hints rather than mandates. The model fills those voids through pattern completion, not logic. You meant “join sales by region and date”? It might read “join sales to anything that smells geographic.” And the SQL it generates obligingly cooperates with that nonsense.Users fall for it because the interface democratizes request syntax. You type a sentence. It returns a visual. You assume comprehension, but the model operates in statistical fog. The fewer constraints you define, the friendlier its lies become.The key mental shift is this: Copilot is not an oracle. It has no epistemology, no concept of truth, only mirrors built from your metadata. It converts your data model into a linguistic probability space. Every structural flaw becomes a semantic hallucination. Where your schema is inconsistent, the AI hallucinates consistency that does not exist.And the tragedy is predictable: executives make decisions based on fiction that feels validated because it came from Microsoft Fabric. If your Gold layer wobbles under inconsistent transformations, Copilot amplifies that wobble into confident storytelling. The model’s eloquence disguises your pipeline’s rot.Think of Copilot as a reflection engine. Its intelligence begins and ends with the quality of your schema. If your joins are crooked, your lineage broken, or your semantics unclear, it reflects uncertainty as certainty. That’s why the cure begins not with prompt engineering but with architectural hygiene.So if Copilot’s only as truthful as your architecture, let’s dissect where the rot begins.Section 2: The Medallion Myth — When Bronze Pollutes GoldEvery data engineer recites the Medallion Architecture like scripture: Bronze, Silver, Gold. Raw, refined, reliable. In theory, it’s a pilgrimage from chaos to clarity—each layer scrubbing ambiguity until the data earns its halo of truth. In practice? Most people build a theme park slide where raw inconsistency takes an express ride from Bronze straight into Gold with nothing cleaned in between.Let’s start at the bottom. Bronze is your landing zone—parquet ...
    続きを読む 一部表示
    24 分
  • The Secret to Power BI Project Success: 3 Non-Negotiable Steps
    2025/11/04
    Opening: The Cost of Power BI Project FailureLet’s discuss one of the great modern illusions of corporate analytics—what I like to call the “successful failure.” You’ve seen it before. A shiny Power BI rollout: dozens of dashboards, colorful charts everywhere, and executives proudly saying, “We’re a data‑driven organization now.” Then you ask a simple question—what changed because of these dashboards? Silence. Because beneath those visual fireworks, there’s no actual insight. Just decorative confusion.Here’s the inconvenient number: industry analysts estimate that about sixty to seventy percent of business intelligence projects fail to meet their objectives—and Power BI projects are no exception. Think about that. Two out of three implementations end up as glorified report collections, not decision tools. They technically “work,” in the sense that data loads and charts render, but they don’t shape smarter decisions or faster actions. They become digital wallpaper.The cause isn’t incompetence or lack of effort. It’s planning—or, more precisely, the lack of it. Most teams dive into building before they’ve agreed on what success even looks like. They start connecting data sources, designing visuals, maybe even arguing over color schemes—all before defining strategic purpose, validating data foundations, or establishing governance. It’s like cooking a five‑course meal while deciding the menu halfway through.Real success in Power BI doesn’t come from templates or clever DAX formulas. It comes from planning discipline—specifically three non‑negotiable steps: define and contain scope, secure data quality, and implement governance from day one. Miss any one of these, and you’re not running an analytics project—you’re decorating a spreadsheet with extra steps. These three steps aren’t optional; they’re the dividing line between genuine intelligence and expensive nonsense masquerading as “insight.”Section 1: Step 1 – Define and Contain Scope (Avoiding Scope Creep)Power BI’s greatest strength—its flexibility—is also its most consistent saboteur. The tool invites creativity: anyone can drag a dataset into a visual and feel like a data scientist. But uncontrolled creativity quickly becomes anarchy. Scope creep isn’t a risk; it’s the natural state of Power BI when no one says no. You start with a simple dashboard for revenue trends, and three weeks later someone insists on integrating customer sentiment, product telemetry, and social media feeds, all because “it would be nice to see.” Nice doesn’t pay for itself.Scope creep works like corrosion—it doesn’t explode, it accumulates. One new measure here, one extra dataset there, and soon your clean project turns into a labyrinth of mismatched visuals and phantom KPIs. The result isn’t insight but exhaustion. Analysts burn time reconciling data versions, executives lose confidence, and the timeline stretches like stale gum. Remember the research: in 2024 over half of Power BI initiatives experienced uncontrolled scope expansion, driving up cost and cycle time. It’s not because teams were lazy; it’s because they treated clarity as optional.To contain it, you begin with ruthless definition. Hold a requirements workshop—yes, an actual meeting where people use words instead of coloring visuals. Start by asking one deceptively simple question: what decisions should this report enable? Not what data you have, but what business question needs answering. Every metric should trace back to that question. From there, convert business questions into measurable success metrics—quantifiable, unambiguous, and, ideally, testable at the end.Next, specify deliverables in concrete terms. Outline exactly which dashboards, datasets, and features belong to scope. Use a simple scoping template—it forces discipline. Columns for objective, dataset, owner, visual type, update frequency, and acceptance criteria. Anything not listed there does not exist. If new desires appear later—and they will—those require a formal change request. A proper evaluation of time, cost, and risk turns “it would be nice to see” into “it will cost six more weeks.” That sentence saves careers.Fast‑track or agile scoping methods can help maintain momentum without losing control. Break deliverables into iterative slices—one dashboard released, reviewed, and validated before the next begins. This creates a rhythm of feedback instead of a massive waterfall collapse. Each iteration answers, “Did this solve the stated business question?” If yes, proceed. If not, fix scope drift before scaling error. A disciplined iteration beats a chaotic sprint every time.And—this may sound obvious but apparently isn’t—document everything. Power BI’s collaborative environment blurs accountability. When everyone can publish reports, no one owns them. Keep a simple record: who requested each dashboard, who approved ...
    続きを読む 一部表示
    24 分
  • Bing Maps Is Dead: The Migration You Can't Skip
    2025/11/04
    Opening: “You Thought Your Power BI Maps Were Safe”You thought your Power BI maps were safe. They aren’t. Those colorful dashboards full of Bing Maps visuals? They’re on borrowed time. Microsoft isn’t issuing a warning—it’s delivering an eviction notice. “Map visuals not supported” isn’t a glitch; it’s the corporate equivalent of a red tag on your data visualization. As of October 2025, Bing Maps is officially deprecated, and the Power BI visuals that depend on it will vanish from your reports faster than you can say “compliance update.”So yes, what once loaded seamlessly will soon blink out of existence, replaced by an empty placeholder and a smug upgrade banner inviting you to “migrate to Azure Maps.” If you ignore it, your executive dashboards will melt into beige despair by next fiscal year. Think that’s dramatic? It isn’t; it’s Microsoft’s transition policy.The good news—if you can call it that—is the problem’s entirely preventable. Today we’ll cover why this migration matters, the checklist every admin and analyst must complete, and how to avoid watching your data visualization layer implode during Q4 reporting.Let’s be clear: Bing Maps didn’t die of natural causes. It was executed for noncompliance. Azure Maps is its state-approved successor—modernized, cloud-aligned, and compliant with the current security regime. I’ll show you why it happened, what’s changing under the hood, and how to rebuild your visuals so they don’t collapse into cartographic chaos.Now, let’s visit the scene of the crime.Section I: The Platform Rebellion — Why Bing Maps Had to DieEvery Microsoft platform eventually rebels against its own history. Bing Maps is just the latest casualty. Like an outdated rotary phone in a world of smartphones, it was functional but embarrassingly analog in a cloud-first ecosystem. Microsoft didn’t remove it because it hated you; it removed it because it hated maintaining pre-Azure architecture.The truth? This isn’t some cosmetic update. Azure Maps isn’t a repaint of Bing Maps—it’s an entirely new vehicle built on a different chassis. Where Bing Maps ran on legacy APIs designed when “cloud” meant “I accidentally deleted my local folder,” Azure Maps is fused to the Azure backbone itself. It scales, updates, authenticates, and complies the way modern enterprise infrastructure expects.Compliance, by the way, isn’t negotiable. You can’t process global location data through an outdated service and still claim adherence to modern data governance. The decommissioning of Bing Maps is Microsoft’s quiet way of enforcing hygiene: no legacy APIs, no deprecated security layers, no excuses. You want to map data? Then use the cloud platform that actually meets its own compliance threshold.From a technical standpoint, Azure Maps offers improved rendering performance, spatial data unification, and API scalability that Bing’s creaky engine simply couldn’t match. The rendering pipeline—now fully GPU‑accelerated—handles smoother zoom transitions and more detailed geo‑shapes. The payoff is higher fidelity visuals and stability across tenants, something Bing Maps often fumbled with regional variations.But let’s translate that from corporate to human. Azure Maps can actually handle enterprise‑grade workloads without panicking. Bing Maps, bless its binary heart, was built for directions, not dashboards. Every time you dropped thousands of latitude‑longitude points into a Power BI visual, Bing Maps was silently screaming.Business impact? Immense. Unsupported visuals don’t just disappear gracefully; they break dashboards in production. Executives click “Open Report,” and instead of performance metrics, they get cryptic placeholder boxes. It’s not just inconvenience—it’s data outage theater. For analytics teams, that’s catastrophic. Quarterly review meetings don’t pause for deprecated APIs.You might think of this as modernization. Microsoft thinks of it as survival. They’re sweeping away obsolete dependencies faster than ever because the era of distributed services demands consistent telemetry, authentication models, and cost tracking. Azure Maps plugs directly into that matrix. Bing Maps didn’t—and never will.So yes, Azure Maps is technically “the replacement,” but philosophically, it’s the reckoning. One represents a single API call; the other is an entire cloud service family complete with spatial analytics integration, security boundaries, and automated updates. This isn’t just updating a visual—it’s catching your data architecture up to 2025.And before you complain about forced change, remember: platform evolution is the entry fee for relevance. You don’t get modern reliability with legacy pipelines. Refusing to migrate is like keeping a flip phone and expecting 5G coverage. You can cling to nostalgia—or you can have functional dashboards.So, the rebellion is complete. Bing ...
    続きを読む 一部表示
    22 分
  • Stop Power BI Chaos: Master Hub and Spoke Planning
    2025/11/03
    Introduction & The Chaos HookPower BI. The golden promise of self-service analytics—and the silent destroyer of data consistency. Everyone loves it until you realize your company has forty versions of the same “Sales Dashboard,” each claiming to be the truth. You laugh; I can hear it. But you know it’s true. It starts with one “quick insight,” and next thing you know, the marketing intern’s spreadsheet is driving executive decisions. Congratulations—you’ve built a decentralized empire of contradiction.Now, let me clarify why you’re here. You’re not learning how to use Power BI. You already know that part. You’re learning how to plan it—how to architect control into creativity, governance into flexibility, and confidence into chaos.Today, we’ll dismantle the “Wild West” of duplication that most businesses mistake for agility, and we’ll replace it with the only sustainable model: the Hub and Spoke architecture. Yes, the adults finally enter the room.Defining the Power BI ‘Wild West’ (The Problem of Duplication)Picture this: every department in your company builds its own report. Finance has “revenue.” Sales has “revenue.” Operations, apparently, also has “revenue.” Same word. Three definitions. None agree. And when executives ask, “What’s our revenue this quarter?” five people give six numbers. It’s not incompetence—it’s entropy disguised as empowerment.The problem is that Power BI makes it too easy to build fast. The moment someone can connect an Excel file, they’re suddenly a “data modeler.” They save to OneDrive, share links, and before you can say “version control,” you have dashboards breeding like rabbits. And because everyone thinks their version is “the good one,” no one consolidates. No one even remembers which measure came first.In the short term, this seems empowering. Analysts feel productive. Managers get their charts. But over time, you stop trusting the numbers. Meetings devolve into crime scenes—everyone’s examining conflicting evidence. The CFO swears the trend line shows growth. The Head of Sales insists it’s decline. They’re both right, because their data slices come from different refreshes, filters, or strangely named tables like “data_final_v3_fix_fixed.”That’s the hidden cost of duplication: every report becomes technically correct within its own microcosm, but the organization loses a single version of truth. Suddenly, your self-service environment isn’t data-driven—it’s faith-based. And faith, while inspirational, isn’t great for auditing.Duplication also kills scalability. You can’t optimize refresh schedules when twenty similar models hammer the same database. Performance tanks, gateways crash, and somewhere an IT engineer silently resigns. This chaos doesn’t happen because anyone’s lazy—it happens because nobody planned ownership, certification, or lineage. The tools outgrew the governance.And Microsoft’s convenience doesn’t help. “My Workspace” might as well be renamed “My Dumpster of Unmonitored Reports.” When every user operates in isolation, the organization becomes a collection of private data islands. You get faster answers in the beginning, but slower decisions in the end. That contradiction is the pattern of every Power BI environment gone rogue.So, what’s the fix? Not more rules. Not less freedom. The fix is structure—specifically, a structure that separates stability from experimentation without killing either. Enter the Hub and Spoke model.Introducing Hub and Spoke Architecture: The Core ConceptThe Hub and Spoke design is not a metaphor; it’s an organizational necessity. Picture Power BI as a city. The Hub is your city center—the infrastructure, utilities, and laws that make life bearable. The Spokes are neighborhoods: creative, adaptive, sometimes noisy, but connected by design. Without the hub, the neighborhoods descend into chaos; without the spokes, the city stagnates.In Power BI terms:* The Hub holds your certified semantic models, shared datasets, and standardized measures—the “official truth.”* The Spokes are your departmental workspaces—Sales, Finance, HR—built for exploration, local customization, and quick iteration. They consume from the hub but don’t redefine it.This model enforces a beautiful kind of discipline. Everyone still moves fast, but they move along defined lanes. When Finance builds a dashboard, it references the certified financial dataset. When Sales creates a pipeline tracker, it uses the same “revenue” definition as Finance. No debates, no duplicates, just different views of a shared reality.Planning a Hub and Spoke isn’t glamorous—it’s maintenance of intellectual hygiene. You define data ownership by domain: who maintains the Sales model? Who validates the HR metrics? Each certified dataset should have both a business and technical owner—one ensures the measure’s logic is sound; the other ...
    続きを読む 一部表示
    24 分
  • Dataverse Pitfalls Q&A: Why Your Power Apps Project Is Too Expensive
    2025/11/03
    Opening: The Cost AmbushYou thought Dataverse was included, didn’t you? You installed Power Apps, connected your SharePoint list, and then—surprise!—a message popped up asking for premium licensing. Congratulations. You’ve just discovered the subtle art of Microsoft’s “not technically a hidden fee.”Your Power Apps project, born innocent as a digital form replacement, is suddenly demanding a subscription model that could fund a small village. You didn’t break anything. You just connected the wrong data source. And Dataverse, bless its enterprise heart, decided you must now pay for the privilege of doing things correctly.Here’s the trap: everyone assumes Dataverse “comes with” Microsoft 365. After all, you already pay for Exchange, SharePoint, Teams, even Viva because someone said “collaboration.” So naturally, Dataverse should be part of the same family. Nope. It’s the fancy cousin—they show up at family reunions but invoice you afterward.So, let’s address the uncomfortable truth: Dataverse can double or triple your Power Apps cost if you don’t know how it’s structured. It’s powerful—yes. But it’s not automatically the right choice. The same way owning a Ferrari is not the right choice for your morning coffee run.Today we’re dissecting the Dataverse cost illusion—why your budget explodes, which licensing myths Microsoft marketing quietly tiptoes around, and the cheaper setups that do 80% of the job without a single “premium connector.” And stay to the end, because I’m revealing one cost-cutting secret Microsoft will never put in a slide deck. Spoiler: it’s legal, just unprofitable for them.So let’s begin where every finance headache starts: misunderstood features wrapped in optimistic assumptions.Section 1: The Dataverse Delusion—Why Projects Go Over BudgetHere’s the thing most people never calculate: Dataverse carries what I call an invisible premium. Not a single line item says “Surprise, this costs triple,” but every part of it quietly adds a paywall. First you buy your Power Apps license—fine. Then you learn that the per-app plan doesn’t cover certain operations. Add another license tier. Then you realize storage is billed separately—database, file, and log categories that refuse to share space. Each tier has a different rate, measured in gigabytes and regret.And of course, you’ll need environments—plural—because your test version shouldn’t share a backend with production. Duplicate one environment, and watch your costs politely double. Create a sandbox for quality assurance, and congratulations—you now have a subscription zoo. Dataverse makes accountants nostalgic for Oracle’s simplicity.Users think they’re paying for an ordinary database. They’re not. Dataverse isn’t “just a database”; it’s a managed data platform wrapped in compliance layers, integration endpoints, and table-level security policies designed for enterprises that fear audits more than hackers. You’re leasing a luxury sedan when all you needed was a bicycle with gears.Picture Dataverse as that sedan: leather seats, redundant airbags, telemetry everywhere. Perfect if you’re driving an international logistics company. Utterly absurd if you just need to manage vacation requests. Yet teams justify it with the same logic toddlers use for buying fireworks: “it looks impressive.”Cost escalation happens silently. You start with ten users on one canvas app; manageable. Then another department says, “Can we join?” You add users, which multiplies licensing. Multiply environments for dev, test, and prod. Add connectors to keep data synced with other systems. Suddenly your “internal form” costs more than your CRM.And storage—oh, the storage. Dataverse divides its hoard into three categories: database, file, and log. The database covers your structured tables. The file tier stores attachments you promised nobody would upload but they always do. Then logs track every activity because, apparently, you enjoy paying for your own audit trail. Each category bills independently, so a single Power App can quietly chew through capacity like a bored hamster eating cables.Now sprinkle API limits. Every action against Dataverse—create, read, update, delete—counts toward a throttling quota. When you cross it, automation slows or outright fails. You can “solve” that by upgrading users to higher-tier licenses. Delightful, isn’t it? Pay to unthrottle your own automation.These invisible charges cascade into business pain. Budgets burst, adoption stalls, and the IT department questions every low-code project submitted henceforth. Users retreat to their beloved Excel sheets, muttering that “low-code” was high-cost all along. Leadership grows suspicious of anything branded ‘Power,’ because the bill certainly was.But before we condemn Dataverse entirely, it’s worth noting: this complexity exists because Dataverse is doing a lot behind ...
    続きを読む 一部表示
    24 分
  • The Hidden Governance Risk in Copilot Notebooks
    2025/11/02
    Opening – The Beautiful New Toy with a Rotten CoreCopilot Notebooks look like your new productivity savior. They’re actually your next compliance nightmare. I realize that sounds dramatic, but it’s not hyperbole—it’s math. Every company that’s tasted this shiny new toy is quietly building a governance problem large enough to earn its own cost center.Here’s the pitch: a Notebooks workspace that pulls together every relevant document, slide deck, spreadsheet, and email, then lets you chat with it like an omniscient assistant. At first, it feels like magic. Finally, your files have context. You ask a question; it draws in insights from across your entire organization and gives you intelligent synthesis. You feel powerful. Productive. Maybe even permanently promoted.The problem begins the moment you believe the illusion. You think you’re chatting with “a tool.” You’re actually training it to generate unauthorized composite data—text that sits in no compliance boundary, inherits no policy, and hides in no oversight system.Your Copilot answers might look harmless—but every output is a derivative document whose parentage is invisible. Think of that for a second. The most sophisticated summarization engine in the Microsoft ecosystem, producing text with no lineage tagging.It’s not the AI response that’s dangerous. It’s the data trail it leaves behind—the breadcrumb network no one is indexing.To understand why Notebooks are so risky, we need to start with what they actually are beneath the pretty interface.Section 1 – What Copilot Notebooks Actually AreA Copilot Notebook isn’t a single file. It’s an aggregation layer—a temporary matrix that pulls data from sources like SharePoint, OneDrive, Teams chat threads, maybe even customer proposals your colleague buried in a subfolder three reorganizations ago. It doesn’t copy those files directly; it references them through connectors that grant AI contextual access. The Notebook is, in simple terms, a reference map wrapped around a conversation window.When users picture a “Notebook,” they imagine a tidy Word document. Wrong. The Notebook is a dynamic composition zone. Each prompt creates synthesized text derived from those references. Each revision updates that synthesis. And like any composite object, it lives in the cracks between systems. It’s not fully SharePoint. It’s not your personal OneDrive. It’s an AI workspace built on ephemeral logic—what you see is AI construction, not human authorship.Think of it like giving Copilot the master key to all your filing cabinets, asking it to read everything, summarize it, and hand you back a neat briefing. Then calling that briefing yours. Technically, it is. Legally and ethically? That’s blurrier.The brilliance of this structure is hard to overstate. Teams can instantly generate campaign recaps, customer updates, solution drafts—no manual hunting. Ideation becomes effortless; you query everything you’ve ever worked on and get an elegantly phrased response in seconds. The system feels alive, responsive, almost psychic.The trouble hides in that intelligence. Every time Copilot fuses two or three documents, it’s forming a new data artifact. That artifact belongs nowhere. It doesn’t inherit the sensitivity label from the HR record it summarized, the retention rule from the finance sheet it cited, or the metadata tags from the PowerPoint it interpreted. Yet all of that information lives, invisibly, inside its sentences.So each Notebook session becomes a small generator of derived content—fragments that read like harmless notes but imply restricted source material. Your AI-powered convenience quietly becomes a compliance centrifuge, spinning regulated data into unregulated text.To a user, the experience feels efficient. To an auditor, it looks combustible. Now, that’s what the user sees. But what happens under the surface—where storage and policy live—is where governance quietly breaks.Section 2 – The Moment Governance BreaksHere’s the part everyone misses: the Notebook’s intelligence doesn’t just read your documents, it rewrites your governance logic. The moment Copilot synthesizes cross‑silo information, the connection between data and its protective wrapper snaps. Think of a sensitivity label as a seatbelt—you can unbuckle it by stepping into a Notebook.When you ask Copilot to summarize HR performance, it might pull from payroll, performance reviews, and an internal survey in SharePoint. The output text looks like a neat paragraph about “team engagement trends,” but buried inside those sentences are attributes from three different policy scopes. Finance data obeys one retention schedule; HR data another. In the Notebook, those distinctions collapse into mush.Purview, the compliance radar Microsoft built to spot risky content, can’t properly see that mush because the Notebook’s workspace acts as a transient surface. It’s not a file;...
    続きを読む 一部表示
    22 分
  • Stop Wasting Money: The 3 Architectures for Fabric Data Flows Gen 2
    2025/11/02
    Opening Hook & Teaching PromiseSomewhere right now, a data analyst is heroically exporting a hundred‑megabyte CSV from Microsoft Fabric—again. Because apparently, the twenty‑first century still runs on spreadsheets and weekend refresh rituals. Fascinating. The irony is that Fabric already solved this, but most people are too busy rescuing their own data to notice.Here’s the reality nobody says out loud: most Fabric projects burn more compute in refresh cycles than they did in entire Power BI workspaces. Why? Because everyone keeps using Dataflows Gen 2 like it’s still Power BI’s little sidecar. Spoiler alert—it’s not. You’re stitching together a full‑scale data engineering environment while pretending you’re building dashboards.Dataflows Gen 2 aren’t just “new dataflows.” They are pipelines wearing polite Power Query clothing. They can stage raw data, transform it across domains, and serve it straight into Direct Lake models. But if you treat them like glorified imports, you pay for movement twice: once pulling from the source, then again refreshing every dependent dataset. Double the compute, half the sanity.Here’s the deal. Every Fabric dataflow architecture fits one of three valid patterns—each tuned for a purpose, each with distinct cost and scaling behavior. One saves you money. One scales like a proper enterprise backbone. And one belongs in the recycle bin with your winter 2021 CSV exports.Stick around. By the end of this, you’ll know exactly how to design your dataflows so that compute bills drop, refreshes shrink, and governance stops looking like duct‑taped chaos. Let’s dissect why Fabric deployments quietly bleed money and how choosing the right pattern fixes it.Section 1 – The Core Misunderstanding: Why Most Fabric Projects Bleed MoneyThe classic mistake goes like this: someone says, “Oh, Dataflows—that’s the ETL layer, right?” Incorrect. That was Power BI logic. In Fabric, the economic model flipped. Compute—not storage—is the metered resource. Every refresh triggers a full orchestration of compute; every repeated import multiplies that cost.Power BI’s import model trained people badly. Back there, storage was finite, compute was hidden, and refresh was free—unless you hit capacity limits. Fabric, by contrast, charges you per activity. Refreshing a dataflow isn’t just copying data; it spins up distributed compute clusters, loads staging memory, writes delta files, and tears it all down again. Do that across multiple workspaces? Congratulations, you’ve built a self‑inflicted cloud mining operation.Here’s where things compound. Most teams organize Fabric exactly like their Power BI workspace folders—marketing here, finance there, operations somewhere else—each with its own little ingestion pipeline. Then those pipelines all pull the same data from the same ERP system. That’s multiple concurrent refreshes performing identical work, hammering your capacity pool, all for identical bronze data. Duplicate ingestion equals duplicate cost, and no amount of slicer optimization will save you.Fabric’s design assumes a shared lakehouse model: one storage pool feeding many consumers. In that model, data should land once, in a standardized layer, and everyone else references it. But when you replicate ingestion per workspace, you destroy that efficiency. Instead of consolidating lineage, you spawn parallel copies with no relationship to each other. Storage looks fine—the files are cheap—but compute usage skyrockets.Dataflows Gen 2 were refactored specifically to fix this. They support staging directly to delta tables, they understand lineage natively, and they can reference previous outputs without re‑processing them. Think of Gen 2 not as Power Query’s cousin but as Fabric’s front door for structured ingestion. It builds lineage graphs and propagates dependencies so you can chain transformations without re‑loading the same source again and again. But that only helps if you architect them coherently.Once you grasp how compute multiplies, the path forward is obvious: architect dataflows for reuse. One ingestion, many consumers. One transformation, many dependents. Which raises the crucial question—out of the infinite ways you could wire this, why are there exactly three architectures that make sense? Because every Fabric deployment lives on a triangle of cost, governance, and performance. Miss one corner, and you start overpaying.So, before we touch a single connector or delta path, we’re going to define those three blueprints: Staging for shared ingestion, Transform for business logic, and Serve for consumption. Master them, and you stop funding Microsoft’s next datacenter through needless refresh cycles. Ready? Let’s start with the bronze layer—the pattern that saves you money before you even transform a single row.Section 2 – Architecture #1: Staging (Bronze) Dataflows for Shared IngestionHere’s the first ...
    続きを読む 一部表示
    24 分