『Generative Deep Learning (2nd Edition)』のカバーアート

Generative Deep Learning (2nd Edition)

Teaching Machines to Paint, Write, Compose, and Play

プレビューの再生
期間限定

2か月無料体験

プレミアムプラン無料体験
プレミアムプランを2か月間無料で試す
期間限定:2025年10月14日(日本時間)に終了
2025年10月14日までプレミアムプラン2か月無料体験キャンペーン開催中。詳細はこちら
オーディオブック・ポッドキャスト・オリジナル作品など数十万以上の対象作品が聴き放題。
オーディオブックをお得な会員価格で購入できます。
無料体験後は月額1,500円で自動更新します。いつでも退会できます。

Generative Deep Learning (2nd Edition)

著者: David Foster
ナレーター: Mike Cooper
プレミアムプランを2か月間無料で試す

無料体験終了後は月額1,500円で自動更新します。いつでも退会できます。

¥2,200 で購入

¥2,200 で購入

このコンテンツについて

Generative AI is the hottest topic in tech. This practical book teaches machine learning engineers and data scientists how to use TensorFlow and Keras to create impressive generative deep learning models from scratch, including variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, normalizing flows, energy-based models, and denoising diffusion models.

The book starts with the basics of deep learning and progresses to cutting-edge architectures. Through tips and tricks, you'll understand how to make your models learn more efficiently and become more creative. You will discover how VAEs can change facial expressions in photos; train GANs to generate images based on your own dataset; build diffusion models to produce new varieties of flowers; train your own GPT for text generation; learn how large language models like ChatGPT are trained; explore state-of-the-art architectures such as StyleGAN2 and ViT-VQGAN; compose polyphonic music using Transformers and MuseGAN; understand how generative world models can solve reinforcement learning tasks; and dive into multimodal models such as DALL.E 2, Imagen, and Stable Diffusion.

This book also explores the future of generative AI and how individuals and companies can proactively begin to leverage this remarkable new technology to create competitive advantage.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2023 Applied Data Science Partners Ltd. (P)2023 Ascent Audio
コンピュータサイエンス 機械理論・人工知能
まだレビューはありません