What Could Possibly Go Wrong? Safety Analysis for AI Systems
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
How can you ever know whether an LLM is safe to use? Even self-hosted LLM systems are vulnerable to adversarial prompts left on the internet and waiting to be found by system search engines. These attacks and others exploit the complexity of even seemingly secure AI systems.
In our latest podcast from the Carnegie Mellon University Software Engineering Institute (SEI), David Schulker and Matthew Walsh, both senior data scientists in the SEI's CERT Division, sit down with Thomas Scanlon, lead of the CERT Data Science Technical Program, to discuss their work on System Theoretic Process Analysis, or STPA, a hazard-analysis technique uniquely suitable for dealing with AI complexity when assuring AI systems.
まだレビューはありません