Unit 2 | Ep 01: The 80% Rule – Why Data Prep Wins Championships
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
概要
Welcome to the first episode of Unit 2 in the Mindforge ML series. In this episode, we are pulling back the curtain on what really makes Machine Learning work.
Most beginners obsess over algorithms. Experts obsess over data. In this opening chapter of Unit 2, we explore why Data Preprocessing is the most critical phase of any project. We aren't just talking about code; we are talking about the "Garbage In, Garbage Out" principle that defines the success or failure of your AI systems.
What you’ll learn:
Why you will spend 80% of your time cleaning data (and why that's a good thing).
The complete roadmap: From raw data collection to model-ready validation.
How to spot the "silent killers" of ML models: duplicates, outliers, and nulls.
The direct link between clean data and high-accuracy predictions.
This episode is your prerequisite for everything that follows. Let's build a solid foundation.
Series: Mindforge ML | Data Preprocessing & TransformationUnit: Unit 2 – Data PreprocessingEpisode: 01Produced by: Chatake Innoworks Pvt. Ltd.Published under: MindforgeAICreator: Akash Shivadas Chatake