Six Shocking Secrets: Unpacking the Transformer, Attention, and the Geometry of LLM Intelligence
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
This episode is based on an article written by Alexander Rodrigues Silva of the Semantic SEO blog, which presents an in-depth analysis of the inner workings of Large-Scale Language Models (LLMs), particularly the Transformer engine and its central Attention component. The author shares six surprising discoveries that emerged from a series of interactions with his AI agent, offered as a service called Agent+Semantic. The explanations focus on how words acquire contextual meaning through initial vectors and internal Query, Key, and Value dialogues, showing that meaning is encoded as geometric directions in a multidimensional space. Finally, the text demystifies the concept of machine "learning," comparing it to a mathematical optimization process, like a ball rolling downhill in the cost function.