『Morten Handberg Breaks Down Leading Edge Erosion』のカバーアート

Morten Handberg Breaks Down Leading Edge Erosion

Morten Handberg Breaks Down Leading Edge Erosion

無料で聴く

ポッドキャストの詳細を見る

概要

Morten Handberg, Uptime’s blade whisperer, returns to the show to tackle leading edge erosion. He covers the fatigue physics behind rain erosion, why OEMs offer no warranty coverage for it, how operators should time repairs before costs multiply, and what LEP solutions are working in the field. Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTube, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us! Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering Tomorrow. Allen Hall: Morten, welcome back to the program. Morten Handberg: Thanks, Allen. It’s fantastic to be back on on, on the podcast. Really excited to, uh, record an episode on Erosion Today. Allen Hall: Wow. Leading as erosion is such a huge worldwide issue and. Operators are having big problems with it right now. It does seem like there’s not a lot of information readily available to operators to understand the issue quite yet. Morten Handberg: Well, it, I mean, it’s something that we’ve been looking at for the, at least the past 10 years. We started looking at it when I was in in DONG or as it back in 2014. But we also saw it very early on because we were in offshore environment, much harsher. Uh, rain erosion conditions, and you were also starting to change the way that the, the, uh, the coatings [00:01:00]that were applied. So there was sort of a, there was several things at play that meant that we saw very early on, early on offshore. Allen Hall: Well, let’s get to the basics of rain erosion and leading edge erosion. What is the physics behind it? What, what happens to the leading edges of these blades as rain? Impacts them. Morten Handberg: Well, you should see it as um, millions of, of small fat, uh, small fatigue loads on the coating because each raindrop, it creates a small impact load on the blade. It creates a rail wave that sort of creates a. Uh, share, share loads out on, uh, into the coating that is then absorbed by the coating, by the filler and and so on. And the more absorbent that your substrate is, the longer survivability you, you’re leading into coating will have, uh, if you have manufacturing defects in the coating, that will accelerate the erosion. But it is a fatigue effect that is then accelerated or decelerate depending on, uh, local blade conditions. Allen Hall: Yeah, what I’ve seen in the [00:02:00] field is the blades look great. Nothing. Nothing. You don’t see anything happening and then all of a sudden it’s like instantaneous, like a fatigue failure. Morten Handberg: I mean, a lot of things is going on. Uh, actually you start out by, uh, by having it’s, they call, it’s called mass loss and it’s actually where the erosion is starting to change the material characteristics of the coating. And that is just the first step. So you don’t see that. You can measure it in a, um, in the laboratory setting, you can actually see that there is a changing in, in the coating condition. You just can’t see it yet. Then you start to get pitting, and that is these very, very, very small, almost microscopic chippings of the coating. They will then accelerate and then you start to actually see the first sign, which is like a slight, a braided surface. It’s like someone took a, a fine grain sandpaper across the surface of the plate, but you only see it on the leading edge. If it’s erosion, it’s only on the center of the leading edge. That’s very important. If you see it on the sides and further down, then it’s, it’s [00:03:00] something else. Uh, it’s not pure erosion, but then you see this fine grain. Then as that progresses, you see more and more and more chipping, more and more degradation across the, the leading edge of the blade. Worse in the tip of it, less so into the inner third of the blade, but it is a gradual process that you see over the leading edge. Finally, you’ll then start to see the, uh, the coating coming off and you’ll start to see exposed laminate. Um, and from there it can, it can accelerate or exposed filler or laminate. From there, it can accelerate because. Neither of those are actually designed to handle any kind of erosion. Allen Hall: What are the critical variables in relation to leading edge erosion? Which variables seem to matter most? Is it raindrop size? Is it tip speed? What factors should we be looking for? Morten Handberg: Tip speeds and rain intensity. Uh, obviously droplet size have an impact, but. But what is an operator you can actually see and monitor for is, well, you know, your tip speed of the blade that matters. Uh, but it is really ...
まだレビューはありません