『Mamba: Linear-Time Sequence Modeling with Selective State Spaces』のカバーアート

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

In this episode of AI Papers Explained, we explore Mamba: Linear-Time Sequence Modeling with Selective State Spaces, a 2023 paper by Albert Gu and Tri Dao that rethinks how AI handles long sequences.Unlike Transformers, which compare every token to every other, Mamba processes information linearly and selectively, remembering only what matters.

This marks a shift toward faster, more efficient architectures, a possible glimpse into the post-Transformer era.

まだレビューはありません