Machine Learning Operations with Databricks on Azure: End‑to‑End in 2025
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
If Databricks is your engine, this episode is the ignition. We break down the end‑to‑end playbook from “Machine Learning Operations (MLOps) with Databricks on Azure End‑To‑End” — a practitioner’s guide to turning raw data into production‑ready ML and measurable business impact in 2025.
You’ll learn how to:
Scale pipelines: Build and optimize data pipelines that don’t buckle under growth
Trust storage: Harness Delta Lake for reliable, high‑performance data foundations
Accelerate analytics: Apply Spark efficiently for analytics and ML workflows
Ship models confidently: Deploy reproducible ML in Databricks with clear guardrails
Avoid pitfalls: Follow step‑by‑step, real‑world guidance that saves time and rework
This isn’t theory. It’s the roadmap for data engineers, analysts, and ML pros who want to move fast, stay current, and deliver results that matter. If you’re ready to unlock Databricks and build with conviction, start here.
Grab the book:
🇺🇸 US: https://www.amazon.com/dp/B0FTSY78DR
🇬🇧 UK: https://www.amazon.co.uk/dp/B0FTSY78DR
🇩🇪 Germany: https://www.amazon.de/dp/B0FTSY78DR