『L'IA aujourd'hui épisode du 2026-01-05』のカバーアート

L'IA aujourd'hui épisode du 2026-01-05

L'IA aujourd'hui épisode du 2026-01-05

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

Bonjour et bienvenue dans le podcast de l'IA par l’IA qui vous permet de rester à la page !Aujourd’hui : un modèle multimodal compact qui tient la distance, une interface web interactive chez Google, l’IA agentique à l’honneur, l’offensive TPU v7 de Google, le parcours d’Arthur Mensch, et un guide pour mieux travailler avec l’IA.On ouvre avec T5Gemma-2, nouveau venu de la famille Gemma 3. Ce modèle encodeur‑décodeur multimodal aligne 270 millions de paramètres et tourne sur un ordinateur portable. Ses embeddings encodeur‑décodeur sont liés, ce qui réduit le nombre total de paramètres, et son décodeur fusionne attention auto et croisée en une seule couche, simplifiant l’architecture et facilitant la parallélisation en inférence. Côté usages, il traite texte et images simultanément et accepte jusqu’à 128 000 tokens grâce à une attention local‑global héritée de Gemma 3. En pratique, un analyste peut donner une capture d’écran d’un graphique de ventes et une consigne textuelle : le modèle repère le mois au plus haut revenu et calcule l’écart à la moyenne trimestrielle. Entraîné sur plus de 140 langues, plus petit et plus flexible que ses prédécesseurs, il cible des machines standard tout en gérant documents longs et tâches multimodales.On reste chez Google avec “vue dynamique” de Gemini, une expérimentation disponible via un bouton sur la version web dans certains pays, dont les États‑Unis. Plutôt qu’un texte statique, l’assistant génère de mini‑pages web interactives : éléments graphiques cliquables, images, animations, informations organisées pour planifier un voyage, structurer des tâches ou comparer des produits sans quitter la page. Limites : l’outil ne capte pas l’intuition humaine — par exemple la perception d’une taille de vêtement — et ces interactions nourrissent la collecte de données. Service gratuit pour l’instant, il pourrait intégrer de la publicité à terme.Cap sur le mot numérique 2025 : “IA agentique”. À la différence de l’IA générative centrée sur la production de contenu, ces agents poursuivent un objectif et prennent des décisions avec peu d’intervention humaine. Exemples : lire les e‑mails, isoler ceux liés aux factures, extraire les montants, alimenter un logiciel comptable, puis envoyer le message de confirmation ; ou encore gérer un agenda, trouver un créneau, réserver un restaurant selon des préférences, et créer l’événement. D’autres termes cités : détox numérique et dégafamisation ; plus loin, hyperscaler, shadowban, vishing, algospeak, numéricovigilance. “IA slop” désigne les contenus générés de faible qualité. Le palmarès des années passées mentionne IA frugale, numérique responsable, métavers.Côté infrastructure, Google prépare pour 2026 le déploiement massif de sa TPU v7 “Ironwood”. Changement d’échelle : la conception passe du serveur au rack, avec matériel, réseau, alimentation et logiciels intégrés au niveau système pour l’entraînement et l’inférence à large échelle. Les TPU, ASIC dédiés à l’IA, reposent sur des matrices statiques avec flux de données et noyaux prédéfinis, quand les GPU lancent dynamiquement des noyaux à l’exécution ; malgré cela, l’écosystème CUDA de Nvidia reste un atout majeur et le portage des bases de code coûteux. Ironwood adopte un design à double puce pour le rendement et le coût, conserve le refroidissement liquide, et mise sur la commutation de circuits optiques pour relier les racks : latence réduite, bande passante stable pour des entraînements longs. Un rack compte 64 puces ; un cluster monte à 144 racks, soit 9 216 TPU synchrones. En 2026, environ 36 000 racks seraient déployés, nécessitant plus de 10 000 commutateurs optiques. La consommation par puce est estimée entre 850 et 1 000 W, jusqu’à 100 kW par rack, avec distribution d’énergie avancée et secours par batterie. La production totale pourrait atteindre 3,2 millions de TPU, mais une expertise poussée de la pile logicielle Google reste nécessaire ; pour la plupart des acteurs, les GPU devraient rester dominants.Portrait rapide d’Arthur Mensch, né en 1992 à Sèvres. Polytechnique, Télécom Paris et Paris‑Saclay, thèse à l’Inria sur l’optimisation stochastique et l’analyse prédictive d’images cérébrales en IRM fonctionnelle. En 2020, il rejoint DeepMind sur les LLM et les systèmes multimodaux. En 2023, il cofonde Mistral AI avec Guillaume Lample et Timothée Lacroix : modèles ouverts et interopérables, valorisation en milliards, partenariats avec Microsoft et Nvidia. Il met en avant le contrôle des modèles et une trajectoire européenne de souveraineté.On termine par un mode d’emploi pour mieux travailler avec l’IA d’ici 2026. Clarifier la communication : prompting spécifique au domaine, changement de perspective,...
まだレビューはありません