Flow-Matched Neural Operators for Continuous PDE Dynamics
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
The episode describes the Continuous Flow Operator (CFO), a novel neural framework for learning the continuous-time dynamics of Partial Differential Equations (PDEs), aimed at overcoming limitations found in conventional models like autoregressive schemes and Neural Ordinary Differential Equations (ODEs). CFO's key innovation is the use of a flow matching objective to directly learn the right-hand side of the PDE dynamics, utilizing the analytic velocity derived from spline-based interpolants fit to trajectory data. This approach uniquely allows for training on irregular and subsampled time grids while enabling arbitrary temporal resolution during inference through standard ODE integration. Across four benchmarks (Lorenz, 1D Burgers, 2D diffusion-reaction, and 2D shallow water equations), the quintic CFO variant demonstrates superior long-horizon stability and significant data efficiency, often outperforming autoregressive baselines trained on complete datasets even when trained on only 25% of irregularly sampled data.