Efficient Fine-Tuning: Adapting Large Models on a Budget
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
概要
This episode dives into strategies for fine-tuning gigantic AI models without needing massive compute. We explain parameter-efficient fine-tuning methods like LoRA (Low-Rank Adaptation), which freezes the original model and trains only small adapter weights, and QLoRA, which goes a step further by quantizing model parameters to 4-bit precision. You’ll learn why techniques like these have become essential for customizing large language models on modest hardware, how they preserve full performance, and what recent results (like fine-tuning a 65B model on a single GPU) mean for practitioners.
まだレビューはありません