
CausalML Book Ch14: Statistical Inference on Heterogeneous Treatment Effects
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
This episode focuses on Conditional Average Treatment Effects (CATEs), which are crucial for understanding how treatments affect different subgroups. It contrasts CATEs with simpler average treatment effects, highlighting the complexity and importance of personalized policy decisions. The text details least squares methods for learning CATEs, including Best Linear Approximations (BLAs) and Group Average Treatment Effects (GATEs), exemplified by a 401(k) study. Furthermore, it explores non-parametric inference for CATEs using Causal Forests and Doubly Robust Forests, demonstrating their application in the 401(k) example and a "welfare" experiment. The authors provide notebook resources for practical implementation of these statistical methods.keepSave to notecopy_alldocsAdd noteaudio_magic_eraserAudio OverviewflowchartMind Map
Disclosure
- The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
- Audio summary is generated by Google NotebookLM https://notebooklm.google/
- The episode art is generated by OpenAI ChatGPT