『Machine Learning』のカバーアート

Machine Learning

An Overview of Artificial Intelligence

プレビューの再生
期間限定

2か月無料体験

聴き放題対象外タイトルです。プレミアムプラン登録で、非会員価格の30%OFFで購入できます。
タイトルを¥630 で購入し、プレミアムプランを2か月間無料で試す
期間限定:2025年10月14日(日本時間)に終了
2025年10月14日までプレミアムプラン2か月無料体験キャンペーン開催中。詳細はこちら
オーディオブック・ポッドキャスト・オリジナル作品など数十万以上の対象作品が聴き放題。
オーディオブックをお得な会員価格で購入できます。
無料体験後は月額1,500円で自動更新します。いつでも退会できます。

Machine Learning

著者: Charles River Editors
ナレーター: Jim D Johnston
タイトルを¥630 で購入し、プレミアムプランを2か月間無料で試す

無料体験終了後は月額1,500円で自動更新します。いつでも退会できます。

¥900 で購入

¥900 で購入

このコンテンツについて

Machine learning, in its broadest sense, is a series of methods to recognize and exploit patterns in data. The name comes from the goal of trying to automate (via machines) the process that humans have used to observe the world around them and draw conclusions (i.e. learn) from those observations. Although all practical work in the machine-learning field is done through computer programming, the concepts are independent of programming knowledge and instead rely on a mathematical basis. This overview will look only at the conceptual and mathematical side of the field, with little mention of the programming or practical applications.

There are a multitude of algorithms that are grouped within the general category of machine learning. Depending on the type of information available, as well as the goal of a problem, many techniques will not work well or simply be impossible to apply. The key to learning different algorithms is to know in which situation each functions best. In many situations, there is some sample data from a system, and the goal is to interpret this data to define the system or to predict the behavior of new situations. These techniques will be examined later in the overview. Initially, problems will not provide sample data, but instead define a problem according to some constraints; the goal will be to find an optimal solution given the constraints.

Machine Learning: The History of Automating Computers to Observe and Analyze Data looks at the attempts to develop machine learning, from successes to failures. You will learn about machine learning like never before.

©2018 Charles River Editors (P)2018 Charles River Editors
工学 数学
まだレビューはありません