『Low-Code AI』のカバーアート

Low-Code AI

A Practical Project-Driven Introduction to Machine Learning

プレビューの再生

Audibleプレミアムプラン30日間無料体験

プレミアムプランを無料で試す
オーディオブック・ポッドキャスト・オリジナル作品など数十万以上の対象作品が聴き放題。
オーディオブックをお得な会員価格で購入できます。
30日間の無料体験後は月額¥1500で自動更新します。いつでも退会できます。

Low-Code AI

著者: Gwendolyn Stripling, Michael Abel
ナレーター: Stephanie Dillard
プレミアムプランを無料で試す

30日間の無料体験後は月額¥1500で自動更新します。いつでも退会できます。

¥1,700 で購入

¥1,700 で購入

このコンテンツについて

Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.

Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.

You'll learn how to distinguish between structured and unstructured data and the challenges they present; visualize and analyze data; preprocess data for input into a machine learning model; differentiate between the regression and classification supervised learning models; compare different ML model types and architectures, from no code to low code to custom training; design, implement, and tune ML models; and export data to a GitHub repository for data management and governance.

©2023 Gwendolyn Stripling and Michael Abel (P)2023 Ascent Audio
コンピュータサイエンス 機械理論・人工知能
まだレビューはありません